
CS 4120 Lecture 15 More syntax-directed translation 30 September 2009
Lecturer: Andrew Myers

In the previous lecture we saw how to translate a high-level language into a tree IR representation. We
dodged one feature of the language we are compiling: that some variables have a representation that is
larger than one word. Many languages, such as C, have this feature. For efficiency, we would like to be able
to represent such variables using registers (when enough registers are available) rather than putting their
values into memory.

We’ll define some additional syntax-directed translation functions to accomplish this part of the transla-
tion. Because our IR has no variables larger than one word, the main goal of this translation is to eliminate
all variables with tuple type, flattening them into multiple single-word variables that can be used at the IR
level.

1 The target

We continue to use an IR based on Appel’s tree-structured IR:

s ::= MOVE(edest, esrc) | EXP(e) | SEQ(s1, . . . , sn)
| JUMP(e) | CJUMP(e, l1, l2) | LABEL(l)

e ::= CONST(i) | TEMP(t) | OP(e1, e2)
| MEM(e) | CALL(ef , e1, . . . , en) | NAME(l) | ESEQ(s, e)

OP ::= ADD | SUB | MUL | DIV | MOD | SHL | SHR | ASHR

2 A translation for tuples

We need a way to translate Iota9 expressions with tuple type. Previously we developed a translation E [[e]]
that translates expressions whose value takes up one word (this included arrays; because arrays have vari-
able length in Iota9, we represent arrays as a pointer to the memory location where their elements are
stored).

Let w(t) mean the number of words needed to represent value of type t:

w(int) = 1
w(bool) = 1
w(t[]) = 1

w((t1, t2, . . . , tn)) =
∑

i∈1..n

w(ti) (This is not necessarily equal to n!)

For expressions with tuple type t = (t1, . . . , tn), we need a syntax-directed translation that produces a
result taking up m = w(t) words:

T [[e, y1, y2, . . . , ym]] translates a term e of tuple type (t1, t2, . . . , tn) to an IR statement that stores the
representation of the result of e into destinations y1, y2, . . . , ym.

In each of the following translations, we assume we are translating an expression with type t = (t1, . . . , tn),
and w(t) = m. We write s1; . . . ; sk on the right-hand side as a shorthand for SEQ(s1, . . . , sk).

We translate a tuple constructor recursively according to the following cases:

1

E [[(e1, . . . , en), y1, . . . , ym]] = MOVE(y1, E [[e1]]); E [[(e2, . . . , en), y2, . . . , ym]] (if w(t1) = 1)
E [[(e1, . . . , en), y1, . . . , ym]] = T [[e1, y1, . . . , yw(t1)]]; E [[(e2, . . . , en), yw(t1)+1, . . . , ym]]

For translating a variable, we have the problem that a single variable x : t might take up multiple
variables at the IR level. We assume that the semantic analysis phase has associated fresh IR-level variables
x1, . . . , xm with the source-level variable x. Then the translation is trivial. As we’ll see, in many cases the
MOVEs can be eliminated after code generation, by representing xi and yi with the same register.

T [[x, y1, . . . , ym]] = MOVE(y1, x1); . . . ;MOVE(ym, xm)

3 Tuple declarations

The Iota9 language has the unusual feature of tuple declarations, which appear as statements in the lan-
guage. Earlier we introduced a translation for statements, which we must extend to handle tuple declara-
tions of the form (d1, . . . , dn) = e. Note that each di may be either a declaration xi : ti or . By appealing
to yet another translation function D[[. . .]] that binds the components of a tuple to a list of declarations, we
can translate a tuple declaration straightforwardly:

S[[(d1, . . . , dn) = e]] = T [[e, x1, . . . , xm]];D[[(d1, . . . , dn), x1, . . . , xm]]

The specification of this new translation function is as follows:

D[[(d1, . . . , dn), x1, x2, . . . , xm]] is an IR statement that binds the variables appearing in declarations
d1, . . . , dn to the corresponding parts of the information contained in variables x1, . . . , xm.

Again, we define this translation recursively.

D[[(, d2, . . . , dn), x1, x2, . . . , xm]] = D[[(d2, . . . , dn), x1+w(t1), x2+w(t1), . . . , xm]]
D[[(y1 : t1, d2, . . . , dn), x1, x2, . . . , xm]] = MOVE(y1, x1);D[[(d2, . . . , dn), x2, . . . , xm]] (where w(t1) = 1)
D[[(y1 : t1, d2, . . . , dn), x1, x2, . . . , xm]] = MOVE(y11, x1); . . . ;MOVE(y1k);D[[(d2, . . . , dn), xk+1, xk+2, . . . , xm]]

(where k = w(t1) and y is represented by IR variables y11, . . . , y1k)

4 Functions

We need to extend the function translations from earlier to handle passing and returning tuples. In case we
are passing a tuple and returning a word-sized argument, we use the T translation to set up the arguments:

E [[f(e)]] = T [[e, x1, . . . , xw(t′)]];CALL(f, x1, . . . , xw(t′))
(where f : t′->t and t′ = (t′1, . . . , t

′
n) and w(t) = 1)

For a function that returns a tuple, we need to decide on a calling convention. We’ll assume that a
function that returns a tuple gets at the IR level an extra argument that comes before any of the source-
level argument. This argument will be the address in memory of a block of words big enough to store the
representation of the tuple to be returned. Since such a function returns a tuple, we will only use it with the
T translation. We will assume we can access the stack pointer using the IR expression TEMP(SP).

2

T [[f(e), y1, . . . , ym]] = MOVE(TEMP(SP),SUB(SP,CONST(w(t))));
CALL(f,TEMP(SP), E [[e]]);
MOVE(y1,MEM(TEMP(SP)));
MOVE(y2,MEM(ADD(TEMP(SP), 4)));
. . .

MOVE(ym,MEM(ADD(TEMP(SP), 4 ∗m− 4)))
(where f : t′->t and w(t′) = 1)

What if both the arguments and the return value are tuples? We just combine the previous two transla-
tions. This is left as an exercise for the reader.

5 IR lowering

After doing the translations described thus far, we arrive at an IR version of the program code. However,
this code is still not very assembly-like in various respects: it contains complex expressions and complex
statements (because of SEQ), and statements inside expressions (because of ESEQ). Statements inside
expressions means that an expression can cause side effects, and statements can cause multiple side effects.
Another difference is the CJUMP statement can jump to two different places, whereas in assembly, a
conditional branch instruction falls through to the next instruction if the condition is false.

To bring the IR closer to assembly we can flatten statements and expressions, resulting in a canonical,
lower-level IR in which:

• There are no nested SEQs.

• There are no ESEQs.

• Each statement contains at most one side effect (or call).

• The “false” target of a CJUMP always goes to the very next statement.

• All CALL nodes appear at the top of the tree, essentially as a kind of IR statement.

6 Canonical IR

We’ll express this IR lowering as yet another syntax-directed translation. Unlike the previous translations,
the source and target of the translation are both varieties of IR. We can describe the target language with
a grammar. First, since there are no nested SEQ nodes, the code becomes a linear sequence of other
kinds nodes of nodes. For brevity, we will write this sequence as s1; s2; . . . ; sn, equivalent to source-level
SEQ(s1, . . . , sn). The grammar for top-level statements is then:

s ::=MOVE(dest, e)
| MOVE(TEMP(t),CALL(f, e1, . . . , en))
| EXP(CALL(f, e1, . . . , en))
| JUMP(e)
| CJUMP(e, l1, l2)
| LABEL(l)

Expressions e are the same as before but may not include ESEQ nodes.

3

7 Translation functions

We express the lowering transformation using two syntax-directed translation functions:

L[[s]] translates an IR statement s to a sequence s1; . . . ; sn of canonical IR statements that have the
same effect. We write L[[s]] = s1; . . . ; sn, or as a shorthand, L[[s]] = ~s.

L[[e]] translates an IR expression e to a sequence of canonical IR statements ~s that have the same
effect, and an expression e′ that has the same value if evaluated after the whole sequence of state-
ments ~s. We write L[[e]] = ~s; e′ to denote this.

Given these translation functions, we can apply L[[s]] to the IR for each function body to obtain a linear
sequence of IR statements representing the function code. This will get us much closer to assembly code
for each function.

4

