
CS 4120 Lecture 10 Type Systems 18 September 2009
Lecturer: Andrew Myers

We have seen that types can be pretty complex, and so can type checking. So we would like to have a
concise way of specifying how to do type checking. This is the role of a static semantics, which defines how
to ascribe types to terms.

In code we said that that we could implement type checking recursively as a method typeCheck on AST
nodes, something like the following:

class Expr {
Type typeCheck(Context c);

}

Formally, we will express the idea that t = e.typeCheck(c) with a typing judgment written Γ ` e : t. In
this judgment, Γ is the typing context (symbol table), e is the term to be type-checked, and t is its type in
the given typing context. We read the judgment as “Γ proves e has type t.”

A typing context Γ is a finite (and possibly empty) map from variable names to types, which we write
as x1 : t1, x2 : t2, . . . , xn : tn. As a shorthand, the judgment ` e : t means that e has type t in the empty typing
context. For example, we have ` 5 : int, because 5 is an integer in every typing context.

1 Inference rules

A type system is a set of types, plus a set of inference rules for deriving typing judgments; in other words, a
type system includes a proof system for typing judgments.

An example of a typing rule is the following inference rule:

Γ ` e1 : int Γ ` e2 : int
Γ ` e1 + e2 : int

(PLUS)

The way to interpret this rule is this: if we can show that e1 is an int in some context Γ, and we can
show e2 is an int in that context, then in the same context Γ we can show e1 + e2 is an int.

The judgment below the line is the conclusion. The judgments above the line are premises. In general
we may write additional conditions above the line that must be true to derive the conclusion; these non-
judgment conditions are called side conditions. If a rule has no premises, we call it an axiom. On the side of
the rule we sometimes write the name of the rule (PLUS) so we can talk about it elsewhere.

Examples of axioms are the following. First, an axiom for the type of an integer literal n:

Γ ` n : int
(INTLIT)

Another axiom lets us derive the type of a variable by finding it in the current typing context. This
axiom has a side condition but has no true premises, hence is an axiom.

Γ(x) = t

Γ ` x : t
(VAR)

An inference rule must express reasoning that is correct under all consistent substitutions of syntactic
expressions (drawn from the correct set) for metavariables appearing in the inference rule. That is, an
inference rule is implicitly universally quantified over its metavariables (such as e1, e2, andΓ in the rule
PLUS). Since axioms have no premises, they must state things that are true no matter what.

The job of a type checker is to determine whether the typing rules can be used to construct a derivation
of a typing judgment for the given term. A derivation a tree of instances of inference rules, showing how
to start from axioms and derive the final judgment. For example, we can prove x : int ` x + 2 : int as
follows, using the inference rules we have already seen:

1

x : int ` x : int
(VAR)

x : int ` 2 : int
(INTLIT)

x : int ` x + 2 : int
(PLUS)

To see how we get this derivation, consider the use of the rule PLUS. We get the corresponding step in
this derivation by applying the substitution e1 7→ x, e2 7→ 2,Γ 7→ x :int to the inference rule.

2 Inference rules for an Iota9-like language

We can also type-check statements in a language like Iota9. Statements don’t return any interesting value,
but we can think of them as computing a value of unit type. A unit type is a type with only one value.
If a computation produces this value, it merely means that the computation terminated. The declaration
void in Java, used as a return type of methods, is essentially a declaration of unit type. We write unit
for the unit type, as in OCaml. The typing judgment Γ ` s : unit means for us that s is a well-typed
statement, though the notation is not essential—we could equally well invent a judgment written Γ ` s, or
alternatively, Γ ` s stmt.

Now we can write rules for type-checking if and while:

Γ ` e : bool Γ ` s1 : unit Γ ` s2 : unit
Γ ` if (e) then s1 else s2 : unit

(IF) Γ ` e : bool Γ ` s : unit
Γ ` while (e) s : unit

(WHILE)

Γ ` {s} : unit
Γ ` s : unit

(BLOCK)
Γ ` s1 : unit Γ ` s2 : unit

Γ ` s1; s2 : unit
(SEQ)

Γ ` x : t Γ ` e : t
Γ ` x = e : unit

(ASSIGN)
Γ ` e1 : t[] Γ ` e2 : int Γ ` e3 : t

Γ ` e1(e2) = e3 : unit
(ARRASSIGN)

3 Implementing a type checker

A key property of these rules is that they are syntax-directed: given a statement, we know which rule must be
used to derive a the typing judgment for the statement. This means that we can implement a type checker
as a simple recursive traversal over the AST. If the rules were not syntax-directed, we might have to search
for a derivation, which could take time exponential in the height of the derivation.

For example, consider the rule IF. We can implement type checking of this statement as a method
typeCheck that recursively invokes the same method on subexpressions, to satisfy premises. Side condi-
tions are checked by non-recursive tests.

class If extends Stmt {
Expr guard;
Stmt consequent, alternative;
void typeCheck(Context c) {

Type tg = guard.typeCheck(c); // premise 1
if (!tg.equals(boolType))

throw new TypeError("guard must be boolean", guard.position());
consequent.typeCheck(); // premise 2
alternative.typeCheck(); // premise 3

}
}

2

4 Top-level context

We need a top-level context that can includes bindings for all of the functions in the program. In an object-
oriented language, it would also map each class name to some representation of the class. If we assume
that the program is a sequence of declarations

f1(x1 : t1) : t′1 = s1 . . . fn(xn : tn) : t′n = sn

then the top-level context we want is:

Γ0 = f1 : t1 → t′1, . . . fn : tn → t′n

We can use this context to type-check function calls:

(f : t → t′) ∈ Γ Γ ` e : t

Γ ` f(e) : t′
(APPLY)

Of course, we also need to type-check function bodies to make sure that they satisfy the contract implied
by their signatures. One trick we use is to record the return type of the function in a special name ρ, which
allows us to type-check return statements. For

Γ0, ρ : t′i ` si : unit

The return statement is type-checked as follows:

Γ, ρ : t ` return t : unit
(RETVAL)

Γ, ρ : unit ` return : unit
(RET)

One nice thing about type systems is that they let us clearly and concisely specify the job of semantic
analysis. Another important use is that a formal type system allows us to prove that a statically typed
language is strongly typed. However, showing you how to do this is a job for a different course.

3

