CS412/413

Introduction to
Compilers and Translators
Spring '01

Lecture 3: Automating lexical analysis

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers

Extended regular expression syntax

If R,, R, are legal regular expressions, so are:

a for any ordinary symbol a

RR, (concatenation)

R,|R, (or)

R* (Kleene star: o0 or more
concats)

R? (oori)

R+ (1 or more)

(R) (no effect: grouping)

[abe...] (any of the listed)
CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 3

Outline

Handouts (2)

Regexp example
Scanner inner loop
DFAs

NFAs

RE-NFA conversion
NFA-DFA conversion

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 2

Lexer generator

« Reads in list of regular expressions R,,...R,,,
one per token, with attached actions
-2[1-9][0-9]* { return new Token(Tokens.IntConst,
Integer.parselnt(yytext()) }
» Generates scanning code that decides:
1. whether the input is lexically well-formed
2. what is the corresponding token sequence
« Observation: Problem 1 is equivalent to
deciding whether the input is in the language
of the regular expression (R,|...|R,)*

« Goal: how can we efficiently test membership
in L(R) for arbitrary R?

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 4

Regular expression matching

« Sketch of an efficient implementation:
—start in some initial state

—look at each input character in sequence,
update scanner state accordingly

—if state at end of input is an accepting state,
the input string matches the RE

« For tokenizing, only need a finite
amount of state: (deterministic) finite
automaton (DFA) or finite state machine

« State of automaton = single integer

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 5

A regexp matcher Mo

e

boolean accept_state[NSTATES] ={ ... };
int trans_table[NSTATES][NCHARS] ={ ... };
int state = 0;

while (state != ERROR_STATE) {
¢ = input.read();
if (c < 0) break;
state = table[state][c];

3

return accept_state[state];

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 7

Finite Automata "[""]*"

« Automaton (DFA) can be represented as

— A transition table . "
Non-
1 Error
1 2 1
2 Error Error
— A graph
Non-"
CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 6

RE — Finite automaton?

« Can we build a finite automaton for every
regular expression?

« Strategy: consider every possible kind of
regular expression (define by induction on
size of regular expression)

a -O-0

- >~ 7 ~

RR 7z ./’
o Q.0 O
R, R, ?

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 8

-——

Definition: NFA

e Non-deterministic finite automaton
has:

— set of states; start state; accepting state(s)

— arrows connecting states labeled by input
symbols, or € (which does not consume input)

—two arrows leaving a state may have same
label

Example:

regexp?

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 9

RE = NFA intuition

-?[0-9]+ (-l¢) [0-9][0-9]*
o 0,1,2.. €
000
0,1,2

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 11

DFA vs NFA

« DFA: action of automaton on each input
symbol is fully determined
— obvious table-driven implementation

» NFA:

—automaton may have choice on each step

— automaton accepts a string if there is any
way to make choices to arrive at accepting
state / every path from start state to an
accept state is a string accepted by
automaton

—not obvious how to implement efficiently!

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 10

NFA construction

« NFA only needs one stop state (why?)
« Canonical NFA:

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 12

Inductive Construction

R*

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 13

Example

e Input string: -23
« NFA states:

{0,1} B

{1} 0,1,2.. €

2y 00O
€ ,1,2..

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 15

Executing NFA

« Problem: how to execute NFA efficiently?

“strings accepted are those for which there
is some corresponding path from start
state to an accept state”

« Conclusion: search all paths in graph
consistent with the string

o Idea: search paths in parallel

— Keep track of subset of NFA states that
search could be in after seeing string prefix

— “Multiple fingers” pointing to graph

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 14

NFA-DFA conversion

 Can convert NFA directly to DFA by
same approach

e Create one DFA for each distinct subset
of NFA states that could arise

- States: {0,1}, {1}, {2, 3}

01,2, g
OROROROY e dv
8 >,

0,1,2..

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers

DFA minimization

« DFA construction can produce large
DFA with many states

« Lexer generators perform additional
phase of DFA minimization to reduce to
minimum possible size (see Dragon
Book for details)

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 17

Summary

Lexical analyzer converts text stream to tokens
Regular expressions define tokens precisely

Regular expressions (+priority order) converted
to a fast table-driven scanner by converting them
to NFAs, then to DFAs

Result: shorter, easily maintained code

— NFA-DFA conversion handles “overlapping” tokens
that can be hard to code, maintain

— usually as or more efficient than hand-written code
Lexer generators available off-the-shelf
Usable for all kinds of input parsing tasks
Read chapters 1-2 from Appel

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 19

Handling multiple token REs

labeled with
highest-priority
DFA accepting token

Longest-match rule: on “error” in DFA, output
token (invoke action) from last reached accept
state.

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 18

