
CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers

CS412/413

Introduction to

Compilers and Translators

Spring ’01

Lecture 3: Automating lexical analysis

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 2

Outline

• Handouts (2)

• Regexp example

• Scanner inner loop

• DFAs

• NFAs

• RE-NFA conversion

• NFA-DFA conversion

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 3

Extended regular expression syntax

If R1, R2 are legal regular expressions, so are:

a for any ordinary symbol a

R1R2 (concatenation)

R1|R2 (or)

R1* (Kleene star: 0 or more

concats)

R1? (0 or 1)

R1+ (1 or more)

(R1) (no effect: grouping)

[abc…] (any of the listed)

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 4

Lexer generator

• Reads in list of regular expressions R1,…Rn,
one per token, with attached actions

-?[1-9][0-9]* { return new Token(Tokens.IntConst,

 Integer.parseInt(yytext()) }

• Generates scanning code that decides:
1. whether the input is lexically well-formed

2. what is the corresponding token sequence

• Observation: Problem 1 is equivalent to
deciding whether the input is in the language
of the regular expression (R1|…|Rn)*

• Goal: how can we efficiently test membership
in L(R) for arbitrary R?

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 5

Regular expression matching

• Sketch of an efficient implementation:
– start in some initial state

– look at each input character in sequence,
update scanner state accordingly

– if state at end of input is an accepting state,
the input string matches the RE

• For tokenizing, only need a finite
amount of state: (deterministic) finite
automaton (DFA) or finite state machine

• State of automaton = single integer

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 6

Finite Automata

• Automaton (DFA) can be represented as

– A transition table

– A graph

0 1 2
"

Non-"

"

 " Non-"
0 1 Error
1 2 1

2 Error Error

"[^"]*"

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 7

A regexp matcher

boolean accept_state[NSTATES] = { … };
int trans_table[NSTATES][NCHARS] = { … };
int state = 0;

while (state != ERROR_STATE) {
c = input.read();
if (c < 0) break;
state = table[state][c];

}
return accept_state[state];

0 1 2
"

Non-"

"

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 8

RE ! Finite automaton?

• Can we build a finite automaton for every
regular expression?

• Strategy: consider every possible kind of
regular expression (define by induction on
size of regular expression)

a a

R1R2
?

R1 | R2 ?

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 9

Definition: NFA

• Non-deterministic finite automaton
has:
– set of states; start state; accepting state(s)

– arrows connecting states labeled by input
symbols, or " (which does not consume input)

– two arrows leaving a state may have same
label

"

"

a b

b a a

Example:

regexp?

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 10

DFA vs NFA

• DFA: action of automaton on each input
symbol is fully determined
– obvious table-driven implementation

• NFA:
– automaton may have choice on each step

– automaton accepts a string if there is any
way to make choices to arrive at accepting
state / every path from start state to an
accept state is a string accepted by
automaton

– not obvious how to implement efficiently!

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 11

RE # NFA intuition

-?[0-9]+ (-|") [0-9][0-9]*

"

—
0,1,2..

0,1,2..

"

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 12

NFA construction

• NFA only needs one stop state (why?)

• Canonical NFA:

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 13

Inductive Construction

R1R2

 R1 R2

R1 | R2
R1

R2

!

! !

!

R*
R

!

!

!

!

!

a
a

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 14

Executing NFA

• Problem: how to execute NFA efficiently?

“strings accepted are those for which there
is some corresponding path from start
state to an accept state”

• Conclusion: search all paths in graph
consistent with the string

• Idea: search paths in parallel

– Keep track of subset of NFA states that
search could be in after seeing string prefix

– “Multiple fingers” pointing to graph

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 15

Example

• Input string: -23

• NFA states:
{0,1}
{1}
{2, 3}
{2, 3}

0 1

"

—

2

0,1,2..

3

0,1,2..

"

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 16

NFA-DFA conversion

• Can convert NFA directly to DFA by
same approach

• Create one DFA for each distinct subset
of NFA states that could arise

• States: {0,1}, {1}, {2, 3}

0 1

"

—

2

0,1,2..

3

0,1,2..

" {0,1} {1}

{2,3}

—

0,1,2..0,1,2..

0,1,2..

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 17

DFA minimization

• DFA construction can produce large
DFA with many states

• Lexer generators perform additional
phase of DFA minimization to reduce to
minimum possible size (see Dragon
Book for details)

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 18

Handling multiple token REs

whitespace

identifier

number

keywords

"

"

"

"

NFA
DFA

Longest-match rule: on “error” in DFA, output
token (invoke action) from last reached accept
state.

labeled with
highest-priority
accepting token

CS 412/413 Introduction to Compilers -- Spring '01 Andrew Myers 19

Summary
• Lexical analyzer converts text stream to tokens

• Regular expressions define tokens precisely

• Regular expressions (+priority order) converted
to a fast table-driven scanner by converting them
to NFAs, then to DFAs

• Result: shorter, easily maintained code
– NFA-DFA conversion handles “overlapping” tokens

that can be hard to code, maintain

– usually as or more efficient than hand-written code

• Lexer generators available off-the-shelf

• Usable for all kinds of input parsing tasks

• Read chapters 1-2 from Appel

