CS 4120/ 4121

Introduction to Compilers
Fall 2009
Andrew Myers

Lecture 1: Overview

CS 4120 Introduction to Compilers

Course Information

MWEF 1:25- 2:15 in Phillips 203
Instructor: Andrew Myers

Teaching Assistants: Anthony Jawad
E-mail: cs4120-l@cs.cornell.edu

Web page: http://www.cs.cornell.edu/
courses/cs4120
Newsgroup: cornell.class.cs4120

CS 4120 Introduction to Compilers

Outline

« About this course

« Introduction to compilers
— What are compilers?
— Why should we learn about them?
— Anatomy of a compiler
« Introduction to lexical analysis
— Text stream to tokens

CS 4120 Introduction to Compilers

Academic integrity

« Taken seriously.
« Do your own (or your group’s) work.

« Report who you discussed homework
with (whether student in class or not).

CS 4120 Introduction to Compilers

CS 4121 is required!

- most coursework is in the project

CS 4120 Introduction to Compilers

Work

« Homeworks: 4, 20% total
-5/5/5/5
« Programming Assignments: 6, 50%
-5/7/8/10/10/10
« Exams: 2 prelims, 30%
-15/15
— No final exam

CS 4120 Introduction to Compilers

Textbooks

+ Required text

— Modern Compiler Implementation in Java.
Andrew Appel.

— on reserve in Engineering Library
« Optional texts

— Compilers—Principles, Techniques and Tools.
Aho, Lam, Sethi and Ullman (The Dragon Book)

— Advanced Compiler Design and
Implementation. Steve Muchnick.

CS 4120 Introduction to Compilers

Homeworks
« Three assignments in first half of course;
one homework in second half

* Not done in groups—you may discuss
with others but do your own work
— Report who you discussed homework with

CS 4120 Introduction to Compilers

Projects

« Six programming assignments
« Implementation language: Java

— talk to us if your group wants to use something else (e.g,, OCaml)
« Groups of 3-4 students

— same group for entire class (ordinarily)

— same grade for all (ordinarily)

- workload and success in this class depend on working and
planning well with your group. Be a good citizen.

— tell us early if you are having problems.
« End of this class: some time to form groups
— create your group on CMS for PAT.
— contact us if you are having trouble finding a group.

CS 4120 Introduction to Compilers

Why take this course?

« CS 4120 is an elective course
« Expect to learn:

— practical applications of theory, algorithms, data
structures

parsing

deeper understanding of what code is

how high-level languages are implemented

a little programming language semantics
Intel x86 architecture, Java

how programs really execute on computers

how to be a better programmer (esp. in groups)

CS 4120 Introduction to Compilers

Assignments

Due at beginning of class

Late homeworks, programming
assignments increasingly penalized

— 1 day: 5%, 2 days: 15%, 3 days: 30%, 4 days: 50%
- weekend = 1 day

- Extensions often granted, but must be
approved 2 days in advance

Projects submitted via CMS

CS 4120 Introduction to Compilers

What are Compilers?

Translators from one representation of
program code to another

Typically: high-level source code to
machine language (object code)
Not always:

— Java compiler: Java to interpretable
bytecodes

—Java JIT: bytecode to executable image

CS 4120 Introduction to Compilers

Source Code

« Source code: optimized for human readability
— expressive: matches human notions of grammar
- redundant to help avoid programming errors

— computation possibly not fully determined by code

int expr(int n)

{
int d;
d=4*n*n* (n+1) * (n + 1);
return d;
}
CS 4120 Introduction to Compilers
13
Example (Output assembly code)
Unoptimized Code Optimized Code
expr: expr:
pushl %eb; pushl %eb;
movl %esp %ebp movl %esp
subl $es movl 8(%ebp) gedx
movl 8(%ebpg6 %eax movl $edx, $éax
movl %eax edx imull %edx, %eax
imull 8 ebp; %edx incl e
movl 8 (%ebp %eax imull $edx, %eax
incl %eax imull %edx, %eax
imull %eax, %edx sall $2, %eax
movl 8(%ebp) %eax leave
incl ret
imull %edx %eax
sall $2, 4eax
movl %eax, -4 (%ebp)
movl -4(% ebp) %eax
leave
ret

CS 4120 Introduction to Compilers

expr:

Machine code

Optimized for hardware

— Redundancy, ambiguity reduced

- Information about intent and reasoning lost
— Assembly code = machine code

pushl %ebp 55

movl %es %eb; 89 e5
subl IP%esp P 83 ec 04
mov 8(%ebp) %eax 8b 45 08
mov. Seédx 89 c2
imull Si%ebp $edx 0f af 55 08
mov. %$ebp $eax 8b 45 08
inc eax 32 £ 40
imull %ea a
xpovt 8(%ebp) %eax 4818 45 08
inc

imull %edx %eax 0f af c2
sall $2, %eax g% zg 22
movl %eax, -4 c
movl -4 (% bp)(%ea>)¢ 8b 45 fc
leave c9

ret c3

CS 4120 Introduction to Compilers

How to translate?

Source code and machine code mismatch
Goal:

— source-level expressiveness for task

- best performance for concrete computation
- reasonable translation efficiency (< O(n3))
— maintainable compiler code

CS 4120 Introduction to Compilers

How to translate correctly?

Programming languages describe computation
precisely

Therefore: translation can be precisely described (a
compiler can be correct)

Correctness is very important!

- hard to debug programs with broken compiler...

non-trivial: programming languages are expressive

implications for development cost, security

this course: techniques for building correct compilers

some compilers have been proven correct!
[X. Leroy, Formal Certification of a Compiler Back End, POPL '06]

CS 4120 Introduction to Compilers

How to translate effectively?

High-level source code

Low-level machine code

CS 4120 Introduction to Compilers

Idea: translate in steps

Compiler uses a series of different
program representations.

Intermediate representations that are
good for program manipulations of
various kinds (analysis, optimization, code
generation).

CS 4120 Introduction to Compilers

Compilation in a Nutshell 1

Source code if (b==0)a=bh;
(character stream)

| Lexical analysis|

Token [if [([b[==Jo]) [a[-]b]; |
stream
__/ifvn ParSiEI
Abstractsyntax / \ /\
tree (AST) b 0 a b

if | Semantic Anal sis|
l)()()lea_n_/ m Y

Decorated AST "\ I~ /

int b int0 inta intb
lvalue

CS 4120 Introduction to Compilers
20

Compilation in a Nutshell 2

if
lm()lca_n_/ \._*l» .

. NN T . .
intb int0 inta intb |Intermed1ate Code Generat10n|

lvalue

LABEL(L1),
TEMP(a) = TEMP(b)
LABEL(L2))

| Optimization, Code Generation |

1.2 cmp ecx, 0
cmovz [ebp+8],ecx

CS 4120 Introduction to Compilers
21

Simplified Compiler Structure

Source code

(character stream) - .
if (b ==0)a=b; \| Lexical analys1s|

Token stream

Parsing
Abstract syntax tree

Front end
(machine-independent)

Program «—»| Intermediate Code Generati0n|

analysis Intermediate code
) & . Control flow graphs
Optimization

Code generation|

Assembly code __—

cmp 0, %ecx
cmovz %ecx, %edx
CS 4120 Introduction to Compilers

Back end

(machine-dependent)

22

Even bigger picture

Source code

Compiler
Assembly code
Assembler
Object code
(machine code +
i symbol tables)
Fully-resolved object Linker
code (machine code +
symbol tables,
relocation info) Loader

Executable image in memory

CS 4120 Introduction to Compilers
23

Schedule

+ Detailed schedule on web page, with links

Lexical analysis and parsing:
Semantic analysis:

Intermediate code:

Prelim #1

Code generation:

Separate compilation and objects:
Optimization:

Prelim #2

Run-time, link-time support:
Advanced topics:

CS 4120 Introduction to Compilers

6
5
4

N

24

First step: Lexical Analysis What is Lexical Analysis?

Source code

(character stream) ——____
Lexical analysis « Converts character stream to token
Token stream stream of pairs {token type, attribute)
Parsing| if (x1*x2<1.0) {
Abstract syntax tree y =Xx1;

| Intermediate Code Generati0n|

*

)
Lilf] [« 1]

xf2] <[1] o) | €]

Code generati0n| l

Assemmycode""”—’l Id: x1 Id: x2 Num: /.0 Id:y

CS 4120 Introduction to Compilers CS 4120 Introduction to Compilers
25 26

Intermediate code

Token stream

« Gets rid of whitespace, comments

« Only (Token type, attribute):
e {Id, “x"), { Float, 1.0e0)

« Token location preserved for debugging, run-time/
compile-time error messages (source file, line
number, character posn...)

e (Id, “x”, “Main.java’, 542)

+ lssues:
— how to specify tokens

— how to implement tokenizer/lexer
CS 4120 Introduction to Compilers

27

