
CS 4120 Introduction to Compilers

CS 4120 / 4121

Introduction to Compilers
Fall 2009

Andrew Myers

Lecture 1: Overview

CS 4120 Introduction to Compilers
2

Outline
• About this course
• Introduction to compilers

– What are compilers?
– Why should we learn about them?
– Anatomy of a compiler

• Introduction to lexical analysis
– Text stream to tokens

CS 4120 Introduction to Compilers
3

Course Information
• MWF 1:25- 2:15PM in Phillips 203
• Instructor: Andrew Myers
• Teaching Assistants: Anthony Jawad
• E-mail: cs4120-l@cs.cornell.edu

• Web page: http://www.cs.cornell.edu/

courses/cs4120

• Newsgroup: cornell.class.cs4120

CS 4120 Introduction to Compilers

Academic integrity
• Taken seriously.
• Do your own (or your group’s) work.
• Report who you discussed homework

with (whether student in class or not).

4

CS 4120 Introduction to Compilers
5

CS 4121 is required!

– most coursework is in the project

CS 4120 Introduction to Compilers
6

Textbooks

• Required text
– Modern Compiler Implementation in Java.

Andrew Appel.
– on reserve in Engineering Library

• Optional texts
– Compilers—Principles, Techniques and Tools.

Aho, Lam, Sethi and Ullman (!e Dragon Book)
– Advanced Compiler Design and

Implementation. Steve Muchnick.

CS 4120 Introduction to Compilers
7

Work

• Homeworks: 4, 20% total
– 5/5/5/5

• Programming Assignments: 6, 50%
– 5/7/8/10/10/10

• Exams: 2 prelims, 30%
– 15/15
– No final exam

CS 4120 Introduction to Compilers
8

Homeworks
• !ree assignments in first half of course;

one homework in second half

• Not done in groups—you may discuss
with others but do your own work
– Report who you discussed homework with

CS 4120 Introduction to Compilers
9

Projects
• Six programming assignments
• Implementation language: Java

– talk to us if your group wants to use something else (e.g., OCaml)
• Groups of 3-4 students

– same group for entire class (ordinarily)
– same grade for all (ordinarily)
– workload and success in this class depend on working and

planning well with your group. Be a good citizen.
– tell us early if you are having problems.

• End of this class: some time to form groups
– create your group on CMS for PA1.
– contact us if you are having trouble finding a group.

CS 4120 Introduction to Compilers
10

Assignments
• Due at beginning of class
• Late homeworks, programming

assignments increasingly penalized
– 1 day: 5%, 2 days: 15%, 3 days: 30%, 4 days: 50%
– weekend = 1 day
– Extensions often granted, but must be

approved 2 days in advance
• Projects submitted via CMS

CS 4120 Introduction to Compilers
11

Why take this course?
• CS 4120 is an elective course
• Expect to learn:

– practical applications of theory, algorithms, data
structures

– parsing
– deeper understanding of what code is
– how high-level languages are implemented
– a little programming language semantics
– Intel x86 architecture, Java
– how programs really execute on computers
– how to be a better programmer (esp. in groups)

CS 4120 Introduction to Compilers
12

What are Compilers?
• Translators from one representation of

program code to another
• Typically: high-level source code to

machine language (object code)
• Not always:

– Java compiler: Java to interpretable
bytecodes

– Java JIT: bytecode to executable image

CS 4120 Introduction to Compilers
13

Source Code
• Source code: optimized for human readability

– expressive: matches human notions of grammar
– redundant to help avoid programming errors
– computation possibly not fully determined by code

int expr(int n)

{

 int d;

 d = 4 * n * n * (n + 1) * (n + 1);

 return d;

}

CS 4120 Introduction to Compilers
14

Machine code
• Optimized for hardware

– Redundancy, ambiguity reduced
– Information about intent and reasoning lost
– Assembly code ! machine code

expr:
 pushl %ebp
 movl %esp, %ebp
 subl $4, %esp
 movl 8(%ebp), %eax
 movl %eax, %edx
 imull 8(%ebp), %edx
 movl 8(%ebp), %eax
 incl %eax
 imull %eax, %edx
 movl 8(%ebp), %eax
 incl %eax
 imull %edx, %eax
 sall $2, %eax
 movl %eax, -4(%ebp)
 movl -4(%ebp), %eax
 leave
 ret

55
89 e5
83 ec 04
8b 45 08
89 c2
0f af 55 08
8b 45 08
40
0f af d0
8b 45 08
40
0f af c2
c1 e0 02
89 45 fc
8b 45 fc
c9
c3

CS 4120 Introduction to Compilers
15

Unoptimized Code

Example (Output assembly code)

expr:
 pushl %ebp
 movl %esp, %ebp
 subl $4, %esp
 movl 8(%ebp), %eax
 movl %eax, %edx
 imull 8(%ebp), %edx
 movl 8(%ebp), %eax
 incl %eax
 imull %eax, %edx
 movl 8(%ebp), %eax
 incl %eax
 imull %edx, %eax
 sall $2, %eax
 movl %eax, -4(%ebp)
 movl -4(%ebp), %eax
 leave
 ret

Optimized Code

expr:
 pushl %ebp
 movl %esp, %ebp
 movl 8(%ebp), %edx
 movl %edx, %eax
 imull %edx, %eax
 incl %edx
 imull %edx, %eax
 imull %edx, %eax
 sall $2, %eax
 leave
 ret

CS 4120 Introduction to Compilers
16

How to translate?
• Source code and machine code mismatch
• Goal:

– source-level expressiveness for task
– best performance for concrete computation
– reasonable translation e"ciency (< O(n3))
– maintainable compiler code

CS 4120 Introduction to Compilers
17

How to translate correctly?
• Programming languages describe computation

precisely
• !erefore: translation can be precisely described (a

compiler can be correct)
• Correctness is very important!

– hard to debug programs with broken compiler…
– non-trivial: programming languages are expressive
– implications for development cost, security
– this course: techniques for building correct compilers
– some compilers have been proven correct!

[X. Leroy, Formal Certification of a Compiler Back End, POPL '06]

CS 4120 Introduction to Compilers
18

How to translate e!ectively?

High-level source code

?

Low-level machine code

CS 4120 Introduction to Compilers
19

Idea: translate in steps
• Compiler uses a series of di#erent

program representations.
• Intermediate representations that are

good for program manipulations of
various kinds (analysis, optimization, code
generation).

CS 4120 Introduction to Compilers
20

Compilation in a Nutshell 1
Source code
(character stream)

Lexical analysis

Parsing

Token
stream

Abstract syntax
tree (AST)

Semantic Analysis

if (b == 0) a = b;

if (b) a = b ;0==

if
==

b 0

=

a b

if

==

int b int 0

=

int a
lvalue

int b

boolean

Decorated AST
int

;

;

CS 4120 Introduction to Compilers
21

Compilation in a Nutshell 2

Intermediate Code Generation

Optimization, Code Generation

Register allocation, optimization

if

==

int b int 0

=

int a
lvalue

int b

boolean int
;

SEQ(CJUMP(TEMP(b) == 0, L1, L2),
 LABEL(L1),
 TEMP(a) = TEMP(b)
 LABEL(L2))

cmp ecx, 0
cmovz [ebp+8],ecx

cmp rb, 0

jnz L2
L1: mov ra, rb
L2:

CS 4120 Introduction to Compilers
22

cmp 0, %ecx
cmovz %ecx, %edx

Simplified Compiler Structure
Source code

(character stream)

Lexical analysis

Parsing

Token stream

Abstract syntax tree

Intermediate Code Generation

Intermediate code

Code generation
Assembly code

Front end
(machine-independent)

Back end
(machine-dependent)

if (b == 0) a = b;

Control flow graphs

Program
analysis

&
Optimization

CS 4120 Introduction to Compilers
23

Even bigger picture

Source code

Compiler
Assembly code

Assembler
Object code
(machine code +
symbol tables)

Fully-resolved object
code (machine code +
symbol tables,
relocation info)

Executable image in memory

Linker

Loader

CS 4120 Introduction to Compilers
24

Schedule
• Detailed schedule on web page, with links

Lexical analysis and parsing: 6
Semantic analysis: 5
Intermediate code: 4
Prelim #1
Code generation: 3
Separate compilation and objects: 4
Optimization: 8
Prelim #2
Run-time, link-time support: 2
Advanced topics: 7

CS 4120 Introduction to Compilers
25

First step: Lexical Analysis
Source code

(character stream)

Lexical analysis

Parsing

Token stream

Abstract syntax tree

Intermediate Code Generation

Code generation

Assembly code

Intermediate code

CS 4120 Introduction to Compilers
26

What is Lexical Analysis?

• Converts character stream to token
stream of pairs !token type, attribute"

if (x1 * x2<1.0) {

 y = x1;

}

i f (x 1 * x 2 < 1 . 0) { \n

if (Id: x1 * Id: x2 < Num: 1.0) { Id: y

CS 4120 Introduction to Compilers
27

Token stream
• Gets rid of whitespace, comments
• Only ! Token type, attribute ":
• ! Id, “x” ", ! Float, 1.0e0 "

• Token location preserved for debugging, run-time/
compile-time error messages (source file, line
number, character posn...)
• ! Id, “x”, “Main.java”, 542"

• Issues:
– how to specify tokens
– how to implement tokenizer/lexer

