
CS 412/413 Spring 2008 Introduction to Compilers 1

CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 34: Memory Management
16 Apr 08

CS 412/413 Spring 2008 Introduction to Compilers 2

Outline
• Explicit memory management

• Garbage collection techniques
– Reference counting
– Deutsch-Bobrow Deferred Reference Counting
– Mark and sweep
– Copying GC
– Concurrent/incremental GC
– Generational GC

• See http://www.memorymanagement.org

CS 412/413 Spring 2008 Introduction to Compilers 3

Explicit Memory Management

• Unix (libc) interface:

void* malloc(long n) : allocate n bytes of storage on
the heap and return its address

void free(void *addr) : release storage allocated by
malloc at address addr

• User-level library manages heap, issues brk calls when
necessary

CS 412/413 Spring 2008 Introduction to Compilers 4

Freelists
• Blocks of unused memory stored in freelist(s)

malloc: find usable block on freelist
free: put block onto head of freelist

Freelist pointer

• Simple, but fragmentation ruins the heap
• External fragmentation = small free blocks become

scattered in the heap
• Cannot allocate a large block even if the sum of all

free blocks is larger than the requested size

heap

CS 412/413 Spring 2008 Introduction to Compilers 5

Buddy System
• Idea 1: freelists for different allocation sizes

– malloc, free are O(1)

• Idea 2: freelist sizes are powers of two: 2, 4, 8, 16, …
– Blocks subdivided recursively: each has buddy
– Round requested block size to the nearest power of 2
– Allocate a free block if available
– Otherwise, (recursively) split a larger block and put all the

other blocks in their respective free lists
– Reverse operation: coalesce (with buddy, if free, not split)

• Internal fragmentation: allocate larger blocks because of
rounding

• Trade external fragmentation for internal fragmentation

CS 412/413 Spring 2008 Introduction to Compilers 6

Explicit Garbage Collection
• Java, C, C++ have new operator / malloc call that

allocates new memory
• How do we get memory back when the object is not

needed any longer?

• Explicit garbage collection (C, C++)
– delete operator / free call destroys object, allows

reuse of its memory. Programmer decides how to
collect garbage

– makes modular programming difficult—have to know
what code “owns” every object so that objects are
deleted exactly once

CS 412/413 Spring 2008 Introduction to Compilers 7

Automatic Garbage Collection

• The other alternative: automatically collect garbage!

• Usually most complex part of the run-time environment
• Want to delete objects automatically if they won’t be used

again: undecidable
• Conservative: delete only objects that definitely won’t be

used again
• Reachability: objects definitely won’t be used again if there is

no way to reach them from root references that are always
accessible (globals, stack, registers)

CS 412/413 Spring 2008 Introduction to Compilers 8

Object Graph
• Stack, registers are treated as the roots of the object graph.

Anything not reachable from roots is garbage
• How can non-reachable objects can be reclaimed efficiently?

Compiler can help

eax

ebx

CS 412/413 Spring 2008 Introduction to Compilers 9

Reference Counting

• Idea: associate a reference count with each allocated block
(reference count = the number of references (pointers)
pointing to the block)

• Keep track of reference counts
– For an assignment x = Expr;

• decrement reference count of block referenced by x
• increment reference count of block Expr references

• When decrement reduces count to zero, object is
unreachable; reclaim it.

CS 412/413 Spring 2008 Introduction to Compilers 10

Reference Counts

• … how about cycles?

1 1

3

1

2

1

CS 412/413 Spring 2008 Introduction to Compilers 11

Reference Counts

• Reference counting doesn’t detect cycles!

1 1

3

1

2

1

1 1

1

CS 412/413 Spring 2008 Introduction to Compilers 12

Performance Problems
• Consider assignment x.f = y.
• Without ref-counts: [tx+ off] = ty
• With ref-counts:

t1 = [tx + f_off];
c = [t1 + refcnt];
c = c - 1;
[t1 + refcnt] = c;
if (c == 0) call reclaim_object(t1);
c = [ty + refcnt];
c = c + 1;
[ty + refcnt] = c;
[tx + f_off] = ty;

• Large run-time overhead
• Result: reference counting not used much by real language

implementations

CS 412/413 Spring 2008 Introduction to Compilers 13

Deutsch-Bobrow Deferred Reference Counting

• Don’t count references to nodes from stack
• When reference count drops to 0, insert it into Zero

Count Set for deferred collection.
• When Zero Count Set is full:

– Scan stack, incrementing counts of all nodes it refers to.
– Scan Zero Count Set, and reclaim any nodes with zero count.
– Set Zero Count Set to empty.
– Scan stack, decrementing counts of all nodes it refers to. If

reference count drops to 0, insert into Zero Count Set.
– Increase size of Zero Count Set if it is more full than some

threshold.

CS 412/413 Spring 2008 Introduction to Compilers 14

Mark and Sweep
• Classic algorithm with two phases

• Phase 1: Mark all reachable objects
– start from roots and traverse graph forward marking

every object reached

• Phase 2: Sweep up the garbage
– Walk over all allocated objects and check for marks
– Unmarked objects are reclaimed
– Marked objects have their marks cleared
– Optional: compact all live objects in heap

CS 412/413 Spring 2008 Introduction to Compilers 15

Traversing the Object Graph

3

2

6

4

5

1

eax

ebx

CS 412/413 Spring 2008 Introduction to Compilers 16

Implementing Mark Phase

• Mark and sweep generally implemented as depth-first
traversal of object graph

• Has natural recursive implementation
• What happens when we try to mark a long linked list

recursively?

CS 412/413 Spring 2008 Introduction to Compilers 17

Pointer Reversal

• Idea: during DFS, each pointer only followed once. Can
reverse pointers after following them -- no stack
needed! (Deutsch-Waite-Schorr algorithm)

• Implication: objects are broken while being traversed;
all computation over objects must be halted during
mark phase (No concurrency allowed)

CS 412/413 Spring 2008 Introduction to Compilers 18

Cost of Mark and Sweep

• Mark and sweep accesses all memory in use by program
– Mark phase reads only live (reachable) data
– Sweep phase reads the all of the data (live + garbage)

• Hence, run time proportional to total amount of data!

• Can pause program for long periods!

CS 412/413 Spring 2008 Introduction to Compilers 19

Conservative Mark and Sweep
• Allocated storage contains both pointers and non-pointers;

integers may look like pointers
• Issues: precise versus conservative collection
• Treating a pointer as a non-pointer: objects may be garbage-

collected even though they are still reachable and in use
(unsafe)

• Treating a non-pointer as a pointer: objects are not garbage
collected even though they are not pointed to (safe, but less
precise)

• Conservative collection: assumes things are pointers unless
they can’t be; requires no language support (works for C!)

CS 412/413 Spring 2008 Introduction to Compilers 20

Copying Collection
• Like mark & sweep: collects all garbage

• Basic idea: use two memory heaps
– one heap in use by program
– other sits idle until GC requires it

• GC mechanism:
– copy all live objects from active heap (from-space) to the

other (to-space)
– dead objects discarded during the copy process
– heaps then switch roles

• Issue: must rewrite referencing relations between objects

CS 412/413 Spring 2008 Introduction to Compilers 21

Copying Collection (Cheney)
• Initialize to-space as empty queue.

head
tail

from-space to-space

roots

CS 412/413 Spring 2008 Introduction to Compilers 22

Copying Collection (Cheney)
• Initialize to-space as empty queue.
• Copy all root objects in from-space into queue (head, tail).

head

tail

from-space to-space

roots

Copy operation leaves forwarding pointer in copied from-space object to the copy in to-space.

CS 412/413 Spring 2008 Introduction to Compilers 23

Copying Collection (Cheney)
• Initialize to-space as empty queue.
• Copy all root objects in from-space into queue (head, tail).
• Dequeue each block b and copy blocks pointed to from b still in

from-space. Update pointers in b to to-space copies.

head

tail

from-space to-space

roots

Copy operation leaves forwarding pointer in copied from-space object to the copy in to-space.

CS 412/413 Spring 2008 Introduction to Compilers 24

Copying Collection (Cheney)
• Initialize to-space as empty queue.
• Copy all root objects in from-space into queue (head, tail).
• Dequeue each block b and copy blocks pointed to from b still in

from-space. Update pointers in b to to-space copies.

head

tail

from-space to-space

roots

Copy operation leaves forwarding pointer in copied from-space object to the copy in to-space.

CS 412/413 Spring 2008 Introduction to Compilers 25

Copying Collection (Cheney)
• Initialize to-space as empty queue.
• Copy all root objects in from-space into queue (head, tail).
• Dequeue each block b and copy blocks pointed to from b still in

from-space. Update pointers in b to to-space copies.

head

tail

from-space to-space

roots

Copy operation leaves forwarding pointer in copied from-space object to the copy in to-space.

CS 412/413 Spring 2008 Introduction to Compilers 26

Copying Collection (Cheney)
• Initialize to-space as empty queue.
• Copy all root objects in from-space into queue (head, tail).
• Dequeue each block b and copy blocks pointed to from b still in

from-space. Update pointers in b to to-space copies.

head

tail

from-space to-space

roots

Copy operation leaves forwarding pointer in copied from-space object to the copy in to-space.

CS 412/413 Spring 2008 Introduction to Compilers 27

Copying Collection (Cheney)
• Initialize to-space as empty queue.
• Copy all root objects in from-space into queue (head, tail).
• Dequeue each block b and copy blocks pointed to from b still in

from-space. Update pointers in b to to-space copies.

head

tail

from-space to-space

roots

Copy operation leaves forwarding pointer in copied from-space object to the copy in to-space.

CS 412/413 Spring 2008 Introduction to Compilers 28

Copying Collection (Cheney)
• Initialize to-space as empty queue.
• Copy all root objects in from-space into queue (head, tail).
• Dequeue each block b and copy blocks pointed to from b still in

from-space. Update pointers in b to to-space copies.

head
tail

from-space to-space

roots

Copy operation leaves forwarding pointer in copied from-space object to the copy in to-space.

CS 412/413 Spring 2008 Introduction to Compilers 29

Benefits of Copying Collection
• Once head=tail, all uncopied objects are garbage. Root

pointers (registers, stack) are swung to point into to-space,
making it active

• Good:
– Simple, no stack space needed
– Run time proportional to # live objects
– Automatically eliminates fragmentation by compacting

memory
– malloc(n) implemented as (tail= tail+ n)

• Bad:
– Precise pointer information required
– Twice as much memory used

CS 412/413 Spring 2008 Introduction to Compilers 30

Incremental and Concurrent GC
• GC pauses avoided by doing GC incrementally; collector &

program run at same time
• Program only holds pointers to to-space
• On field fetch, if pointer to from-space, copy object and

update pointer to to-space copy.
• On swap of spaces, copy roots and fix stack/registers

head

tail

from-space to-space

roots

CS 412/413 Spring 2008 Introduction to Compilers 31

Generational GC

• Observation: if an object has been reachable for a long
time, it is likely to remain so

• In long-running system, mark & sweep, copying
collection waste time, scanning/copying older objects

• Approach: assign heap objects to different generations
G0, G1, G2,…

• Generation G0 contains newest objects, most likely to
become garbage (<10% live)

CS 412/413 Spring 2008 Introduction to Compilers 32

Generations

• Consider a two-generation system. G0 = new objects,
G1 = tenured objects

• New generation is scanned for garbage much more
often than tenured objects

• New objects eventually given tenure if they last long
enough

• Roots of garbage collection for collecting G0 include all
objects in G1 (as well as stack, registers)

CS 412/413 Spring 2008 Introduction to Compilers 33

Remembered Set

• How to avoid scanning all tenured objects?

• In practice, few tenured objects will point to new objects;
unusual for an object to point to a newer object

• Can only happen if older object is modified long after
creation to point to new object

• Compiler inserts extra code on object field pointer writes to
catch modifications to older objects—older objects are
remembered set for scanning during GC, tiny fraction of G1

CS 412/413 Spring 2008 Introduction to Compilers 34

Summary

• Garbage collection is an aspect of the program
environment with implications for compilation

• Important language feature for writing modular code

• IC: Boehm/Demers/Weiser collector
http://www.hpl.hp.com/personal/Hans_Boehm/gc/
– conservative: no compiler support needed
– generational: avoids touching lots of memory
– incremental: avoids long pauses
– true concurrent (multi-processor) extension exist

	CS412/CS413
	Outline
	Explicit Memory Management
	Freelists
	Buddy System
	Explicit Garbage Collection
	Automatic Garbage Collection
	Object Graph
	Reference Counting
	Reference Counts
	Reference Counts
	Performance Problems
	Deutsch-Bobrow Deferred Reference Counting�
	Mark and Sweep
	Traversing the Object Graph
	Implementing Mark Phase
	Pointer Reversal
	Cost of Mark and Sweep
	Conservative Mark and Sweep
	Copying Collection
	Copying Collection (Cheney)
	Copying Collection (Cheney)
	Copying Collection (Cheney)
	Copying Collection (Cheney)
	Copying Collection (Cheney)
	Copying Collection (Cheney)
	Copying Collection (Cheney)
	Copying Collection (Cheney)
	Benefits of Copying Collection
	Incremental and Concurrent GC
	Generational GC
	Generations
	Remembered Set
	Summary

