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Outline
• Explicit memory management

• Garbage collection techniques 
– Reference counting
– Deutsch-Bobrow Deferred Reference Counting
– Mark and sweep 
– Copying GC
– Concurrent/incremental GC
– Generational GC

• See http://www.memorymanagement.org
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Explicit Memory Management

• Unix (libc) interface:

void* malloc(long n) : allocate n bytes of storage on 
the heap and return its address

void free(void *addr) : release storage allocated by 
malloc at address addr

• User-level library manages heap, issues brk calls when 
necessary
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Freelists
• Blocks of unused memory stored in freelist(s)

malloc: find usable block on freelist
free: put block onto head of freelist

Freelist pointer

• Simple, but fragmentation ruins the heap
• External fragmentation = small free blocks become 

scattered in the heap
• Cannot allocate a large block even if the sum of all 

free blocks is larger than the requested size

heap
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Buddy System
• Idea 1: freelists for different allocation sizes

– malloc, free are O(1)

• Idea 2: freelist sizes are powers of two: 2, 4, 8, 16, …
– Blocks subdivided recursively: each has buddy
– Round requested block size to the nearest power of 2
– Allocate a free block if available
– Otherwise, (recursively) split a larger block and put all the 

other blocks in their respective free lists
– Reverse operation: coalesce (with buddy, if free, not split)

• Internal fragmentation: allocate larger blocks because of 
rounding

• Trade external fragmentation for internal fragmentation
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Explicit Garbage Collection
• Java, C, C++ have new operator / malloc call that 

allocates new memory 
• How do we get memory back when the object is not 

needed any longer?

• Explicit garbage collection (C, C++)
– delete operator  / free call destroys object, allows 

reuse of its memory. Programmer decides how to 
collect garbage

– makes modular programming difficult—have to know 
what code “owns” every object so that objects are 
deleted exactly once
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Automatic Garbage Collection

• The other alternative: automatically collect garbage!

• Usually most complex part of the run-time environment
• Want to delete objects automatically if they won’t be used 

again: undecidable
• Conservative: delete only objects that definitely won’t be 

used again
• Reachability: objects definitely won’t be used again if there is 

no way to reach them from root references that are always 
accessible (globals, stack, registers)
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Object Graph
• Stack, registers are treated as the roots of the object graph. 

Anything not reachable from roots is garbage
• How can non-reachable objects can be reclaimed efficiently? 

Compiler can help

eax

ebx
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Reference Counting

• Idea: associate a reference count with each allocated block 
(reference count = the number of references (pointers) 
pointing to the block)

• Keep track of reference counts
– For an assignment x = Expr;

• decrement reference count of block referenced by x
• increment reference count of block Expr references

• When decrement reduces count to zero, object is 
unreachable; reclaim it.
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Reference Counts

• … how about cycles?
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Reference Counts

• Reference counting doesn’t detect cycles!
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Performance Problems
• Consider assignment   x.f = y. 
• Without ref-counts: [tx+ off] = ty
• With ref-counts:

t1 = [tx + f_off]; 
c = [t1 + refcnt]; 
c = c - 1; 
[t1 + refcnt] = c;
if (c == 0) call reclaim_object(t1); 
c = [ty + refcnt]; 
c = c + 1; 
[ty + refcnt] = c; 
[tx + f_off] = ty;

• Large run-time overhead
• Result: reference counting not used much by real language 

implementations
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Deutsch-Bobrow Deferred Reference Counting

• Don’t count references to nodes from stack
• When reference count drops to 0, insert it into Zero 

Count Set for deferred collection.
• When Zero Count Set is full:

– Scan stack, incrementing counts of all nodes it refers to.
– Scan Zero Count Set, and reclaim any nodes with zero count.
– Set Zero Count Set to empty.
– Scan stack, decrementing counts of all nodes it refers to. If 

reference count drops to 0, insert into Zero Count Set.
– Increase size of Zero Count Set if it is more full than some 

threshold.
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Mark and Sweep
• Classic algorithm with two phases

• Phase 1: Mark all reachable objects
– start from roots and traverse graph forward marking 

every object reached

• Phase 2: Sweep up the garbage
– Walk over all allocated objects and check for marks
– Unmarked objects are reclaimed
– Marked objects have their marks cleared
– Optional: compact all live objects in heap
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Traversing the Object Graph
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Implementing Mark Phase

• Mark and sweep generally implemented as depth-first 
traversal of object graph

• Has natural recursive implementation
• What happens when we try to mark a long linked list 

recursively?
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Pointer Reversal

• Idea: during DFS, each pointer only followed once. Can 
reverse pointers after following them -- no stack 
needed! (Deutsch-Waite-Schorr algorithm)

• Implication: objects are broken while being traversed; 
all computation over objects must be halted during 
mark phase (No concurrency allowed)
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Cost of Mark and Sweep

• Mark and sweep accesses all memory in use by program
– Mark phase reads only live (reachable) data
– Sweep phase reads the all of the data (live + garbage)

• Hence, run time proportional to total amount of data!

• Can pause program for long periods!
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Conservative Mark and Sweep
• Allocated storage contains both pointers and non-pointers; 

integers may look like pointers
• Issues: precise versus conservative collection
• Treating a pointer as a non-pointer: objects may be garbage-

collected even though they are still reachable and in use 
(unsafe)

• Treating a non-pointer as a pointer: objects are not garbage 
collected even though they are not pointed to (safe, but less 
precise)

• Conservative collection: assumes things are pointers unless 
they can’t be; requires no language support  (works for C!)
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Copying Collection
• Like mark & sweep: collects all garbage

• Basic idea: use two memory heaps
– one heap in use by program
– other sits idle until GC requires it

• GC mechanism:
– copy all live objects from active heap (from-space) to the 

other (to-space)
– dead objects discarded during the copy process
– heaps then switch roles

• Issue: must rewrite referencing relations between objects
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Copying Collection (Cheney)
• Initialize to-space as empty queue.

head
tail

from-space to-space

roots
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Copying Collection (Cheney)
• Initialize to-space as empty queue.
• Copy all root objects in from-space into queue (head, tail).

head

tail

from-space to-space

roots

Copy operation leaves forwarding pointer in copied from-space object to the copy in to-space.
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Copying Collection (Cheney)
• Initialize to-space as empty queue.
• Copy all root objects in from-space into queue (head, tail).
• Dequeue each block b and copy blocks pointed to from b still in 

from-space. Update pointers in b to to-space copies.

head

tail

from-space to-space

roots

Copy operation leaves forwarding pointer in copied from-space object to the copy in to-space.
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Benefits of Copying Collection
• Once head=tail, all uncopied objects are garbage. Root 

pointers (registers, stack) are swung to point into to-space, 
making it active

• Good:
– Simple, no stack space needed
– Run time proportional to # live objects
– Automatically eliminates fragmentation by compacting 

memory
– malloc(n) implemented as (tail= tail+ n)

• Bad:
– Precise pointer information required
– Twice as much memory used
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Incremental and Concurrent GC
• GC pauses avoided by doing GC incrementally; collector & 

program run at same time
• Program only holds pointers to to-space
• On field fetch, if pointer to from-space, copy object and 

update pointer to to-space copy.
• On swap of spaces, copy roots and fix stack/registers

head

tail

from-space to-space

roots
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Generational GC

• Observation: if an object has been reachable for a long 
time, it is likely to remain so

• In long-running system, mark & sweep, copying 
collection waste time, scanning/copying older objects

• Approach: assign heap objects to different generations 
G0, G1, G2,…

• Generation G0 contains newest objects, most likely to 
become garbage (<10% live)
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Generations

• Consider a two-generation system. G0 = new objects, 
G1 = tenured objects

• New generation is scanned for garbage much more 
often than tenured objects

• New objects eventually given tenure if they last long 
enough

• Roots of garbage collection for collecting G0 include all 
objects in G1 (as well as stack, registers)
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Remembered Set

• How to avoid scanning all tenured objects?

• In practice, few tenured objects will point to new objects; 
unusual for an object to point to a newer object

• Can only happen if older object is modified long after 
creation to point to new object

• Compiler inserts extra code on object field pointer writes to 
catch modifications to older objects—older objects are 
remembered set for scanning during GC, tiny fraction of G1
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Summary

• Garbage collection is an aspect of the program 
environment with implications for compilation

• Important language feature for writing modular code

• IC: Boehm/Demers/Weiser collector
http://www.hpl.hp.com/personal/Hans_Boehm/gc/
– conservative: no compiler support needed
– generational: avoids touching lots of memory
– incremental: avoids long pauses
– true concurrent (multi-processor) extension exist
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