Near Optimal Instruction Selection on DAGs

By David Ryan Koes and Set Copen Goldstein
Carnegie-Mellon University
CGO ’08 Boston, MA (April 7, 2008)

Please read paper (found on Koes web page)
Optimal Tiling for Trees

• Pass 1. Ignore common subexpressions and find optimal covering for fully duplicated DAG
procedure Select

fixedNodes := { }
BottomUpDP()
TopDownSelect()
ImproveCSEDecisions()
BottomUpDP()
TopDownSelect()
procedure BottomUpDP

for \(n \in \text{reverseTopologicalSort}(\text{DAG}) \) do

\[
\text{bestChoiceForNode}[n].\text{cost} := \infty
\]

for \(t_n \in \text{matchingTiles}(n) \) do

if not \(\text{hasInteriorFixedNode}(t_n, \text{fixedNodes}) \) then

\[
\text{val} := \text{cost}(t_n) + \sum_{n' \in \text{edgeNodes}(t_n)} \text{bestChoiceForNode}[n'].\text{cost}
\]

if \(\text{val} < \text{bestChoiceForNode}[n].\text{cost} \) then

\[
\text{bestChoiceForNode}[n].\text{cost} := \text{val}
\]

\[
\text{bestChoiceForNode}[n].\text{tile} := t_n
\]
procedure TopDownSelect

matchedTiles.clear()
coveringTiles.clear()
q.push(roots(DAG))
while not q.empty() do
 n := q.pop()
 bestTile := bestChoiceForNode[n].tile
 matchedTiles.add(bestTile)
 for every node n_t covered by bestTile do
 coveringTiles[n_t].add(bestTile)
 for $n' \in$ edgeNodes(bestTile) do
 q.push(n')
Optimal Tiling for Trees

• Pass 1. Ignore common sub-expressions and find optimal covering for fully duplicated DAG

• fixedNodes := set of shared nodes not allowed in interiors of tiles, i.e., nodes required to match roots of tiles and therefore represent common sub-expressions for which instruction selection can be done in a decomposed manner.

• Pass 2. Find optimal covering for decomposed DAG defined by fixedNodes
procedure Select

fixedNodes := {}
BottomUpDP()
TopDownSelect()
ImproveCSEDecisions()
BottomUpDP()
TopDownSelect()
procedure BottomUpDP [revised]

for n ∈ reverseTopologicalSort(DAG) do
 bestChoiceForNode[n].cost := ∞
 for t_n ∈ matchingTiles(n) do
 if not hasInteriorFixedNode(t_n, fixedNodes) then
 val := cost(t_n) +
 \[\sum_{n' ∈ \text{edgeNodes}(t_n)} \text{bestChoiceForNode}[n'].cost\]
 if val < bestChoiceForNode[n].cost then
 bestChoiceForNode[n].cost := val
 bestChoiceForNode[n].tile := t_n
procedure TopDownSelect [revised]

matchedTiles.clear()
coveringTiles.clear()
q.push(roots(DAG))
while not q.empty() do
 n := q.pop()
 bestTile := bestChoiceForNode[n].tile
 matchedTiles.add(bestTile)
 for every node n_t covered by bestTile do
 coveringTiles[n_t].add(bestTile)
 for $n' \in$ edgeNodes(bestTile) do
 q.push(n')
procedure ImproveCSEDDecision

for n ∈ sharedNodes(DAG) do
 if coveringTiles[n].size() > 1 then
 overlapCost := getOverlapCost(n, coveringTiles)
 cseCost := bestChoiceForNode[n].cost
 for tn ∈ coveringTiles[n] do
 cseCost := cseCost + getTileCutCost(tn, n)
 if cseCost < overlapCost then
 fixedNodes.add(n)

/* I.e., if the cost of the CSE + the cost of cutting the
overlapping tiles < cost of the overlapping computation,
decompose DAG at CSE. */
function GetOverlapCost(n)

 cost := 0; seen := { }
 for t ∈ coveringTiles[n] do q.push(t); seen.add(t)
 while not q.empty() do
 t := q.pop()
 cost := cost + cost(t)
 for n’ ∈ edgeNodes(t) do
 if n’ is reachable from n then
 t’ := bestChoiceForNode[t].tile
 if coveringTiles[n’].size() = 1 then
 cost := cost + bestChoiceForNode[n’].cost
 else if t’ ∉ seen then
 seen.add(t’)
 q.push(t’)
 return cost
function GetTileCutCost(t, n)

bestCost := ∞
r := root(t)
for t' ∈ matchingTiles(r) do
 if n ∈ edgeNodes(t') then
 cost := cost(t')
 for n' ∈ edgeNodes(t') ^ n' ≠ n do
 cost := cost + bestChoiceForNode[n'].cost
 if cost < bestCost then
 bestCost := cost
 for n' ∈ edgeNodes(t) do //Subtract edge costs of original tile
 if path r \rightarrow n' ∈ t does not contain n then
 bestCost := bestCost - bestChoiceForNode[n'].cost
return bestCost
Problems with Model

- Modern processors:
 - execution time not sum of tile times
 - instruction order matters
 - Processors pipeline instructions and execute different pieces of instructions in parallel
 - bad ordering (e.g. too many memory operations in sequence) stalls processor pipeline
 - processor can execute some instructions in parallel (super-scalar)
 - cost is merely an approximation
 - instruction scheduling needed
Summary

• Can specify code generation process as a set of tiles that relate low IR trees (DAGs) to instruction sequences
• Instructions using fixed registers problematic but can be handled using extra temporaries
• Maximal Munch algorithm implemented simply as recursive traversal
• Dynamic programming algorithm generates better code, can be implemented recursively using memoization
• Real optimization will also require instruction scheduling