CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 31: Instruction Selection
09 Apr 08
Backend Optimizations

• Instruction selection
 - Translate low-level IR to assembly instructions
 - A machine instruction may model multiple IR instructions
 - Especially applicable to CISC architectures

• Register Allocation
 - Place variables into registers
 - Avoid spilling variables on stack
Instruction Selection

- Different sets of instructions in low-level IR and in the target machine
- Instruction selection = translate low-level IR to assembly instructions on the target machine

- Straightforward solution: translate each low-level IR instruction to a sequence of machine instructions

- Example:

 \[x = y + z \]

 mov y, r1
 mov z, r2
 add r2, r1
 mov r1, x
Instruction Selection

• **Problem:** straightforward translation is inefficient
 - One machine instruction may perform the computation in multiple low-level IR instructions
 - Excessive memory traffic

• Consider a machine that includes the following instructions:

 - `add r2, r1` \(\rightarrow\) \(r1 \leftarrow r1+r2\)
 - `mulc c, r1` \(\rightarrow\) \(r1 \leftarrow r1*c\)
 - `load r2, r1` \(\rightarrow\) \(r1 \leftarrow *r2\)
 - `store r2, r1` \(\rightarrow\) \(*r1 \leftarrow r2\)
 - `movem r2, r1` \(\rightarrow\) \(*r1 \leftarrow *r2\)
 - `movex r3, r2, r1` \(\rightarrow\) \(*r1 \leftarrow *(r2+r3)\)
Example

- Consider the computation:
 \[a[i+1] = b[j] \]

- Assume \(a, b, i, j \) are global variables
 register \(ra \) holds address of \(a \)
 register \(rb \) holds address of \(b \)
 register \(ri \) holds value of \(i \)
 register \(rj \) holds value of \(j \)

Low-level IR:

\[
\begin{align*}
 t1 &= ji * 4 \\
 t2 &= b + t1 \\
 t3 &= *t2 \\
 t4 &= i + 1 \\
 t5 &= t4 * 4 \\
 t6 &= a + t5 \\
 *t6 &= t3
\end{align*}
\]
Possible Translation

- **Address of b[j]:**
 - \texttt{mulc 4, rj}
 - \texttt{add rj, rb}

- **Load value b[j]:**
 - \texttt{load rb, r1}

- **Address of a[i+1]:**
 - \texttt{add 1, ri}
 - \texttt{mulc 4, ri}
 - \texttt{add ri, ra}

- **Store into a[i+1]:**
 - \texttt{store r1, ra}

Low-level IR:

\[
\begin{align*}
 t1 & = j \times 4 \\
 t2 & = b + t1 \\
 t3 & = *t2 \\
 t4 & = i + 1 \\
 t5 & = t4 \times 4 \\
 t6 & = a + t5 \\
 *t6 & = t3
\end{align*}
\]
Another Translation

- Address of b[j]: \text{mulc 4, rj}
 \text{add rj, rb}

- Address of a[i+1]: \text{add 1, ri}
 \text{mulc 4, ri}
 \text{add ri, ra}

- Store into a[i+1]: \text{movem rb, ra}

\text{Low-level IR:}

\begin{align*}
 t1 &= j \cdot 4 \\
 t2 &= b + t1 \\
 t3 &= *t2 \\
 t4 &= i + 1 \\
 t5 &= t4 \cdot 4 \\
 t6 &= a + t5 \\
 *t6 &= t3
\end{align*}
Yet Another Translation

- Index of b[j]: \texttt{mulc 4, rj}
- Address of a[i+1]: \texttt{add 1, ri} \hspace{1cm} \texttt{mulc 4, ri} \hspace{1cm} \texttt{add ri, ra}
- Store into a[i+1]: \texttt{movex rj, rb, ra}

Low-level IR:

\begin{align*}
 t1 &= j*4 \\
 t2 &= b+t1 \\
 t3 &= *t2 \\
 t4 &= i+1 \\
 t5 &= t4*4 \\
 t6 &= a+t5 \\
 *t6 &= t3
\end{align*}
Issue: Instruction Costs

- Different machine instructions have different costs
 - Time cost: how fast instructions are executed
 - Space cost: how much space instructions take

- Example: cost = number of cycles
 - `add r2, r1` cost=1
 - `mulc c, r1` cost=10
 - `load r2, r1` cost=3
 - `store r2, r1` cost=3
 - `movem r2, r1` cost=4
 - `movex r3, r2, r1` cost=5

- Goal: find translation with smallest cost
How to Solve the Problem?

- **Difficulty:** low-level IR instruction matched by a machine instructions may not be adjacent

- Example: `movem rb, ra`

- Idea: use tree-like representation!
 - Easier to detect matching instructions

Low-level IR:
\[
\begin{align*}
t1 &= j*4 \\
t2 &= b+t1 \\
t3 &= *t2 \\
t4 &= i+1 \\
t5 &= t4*4 \\
t6 &= a+t5 \\
*_{t6} &= t3
\end{align*}
\]
Tree Representation

- **Goal**: determine parts of the tree that correspond to machine instructions

\[a[i+1] = b[j] \]

```
+                  load
    +              +
    a              b
    *        *
    +      +
    4      4
    i      j
```

Low-level IR:

\[
\begin{align*}
 t1 &= j \times 4 \\
 t2 &= b + t1 \\
 t3 &= t2 \times 4 \\
 t4 &= i + 1 \\
 t5 &= t4 \times 4 \\
 t6 &= a + t5 \\
 \ast t6 &= t3
\end{align*}
\]
Tiles

- **Tile** = tree patterns (subtrees) corresponding to machine instructions

```
movem rb, ra

Low-level IR:

\[
\begin{align*}
t1 &= j \times 4 \\
t2 &= b + t1 \\
t3 &= *t2 \\
t4 &= i + 1 \\
t5 &= t4 \times 4 \\
t6 &= a + t5 \\
*_{t6} &= t3
\end{align*}
\]
```
Tiling

- Tiling = cover the tree with disjoint tiles

```
movem rb, ra
```

```
store
load
```

```
Assembly:
mulc 4, rj
add rj, rb
add 1, ri
mulc 4, ri
add ri, ra
movem rb, ra
```
Tiling

store rb, ra

movex rj, rb, ra
Directed Acyclic Graphs

- **Tree representation**: appropriate for instruction selection
 - Tiles = subtrees → machine instructions

- **DAG** = more general structure for representing instructions
 - Common sub-expressions represented by the same node
 - Tile the expression DAG

Example:

\[
\begin{align*}
t &= y + 1 \\
y &= z \ast t \\
t &= t + 1 \\
z &= t \ast y
\end{align*}
\]
Big Picture

• What the compiler has to do:

 1. Translate low-level IR code into DAG representation
 2. Then find a good tiling of the DAG
 - Maximal munch algorithm
 - Dynamic programming algorithm
DAG Construction

- **Input:** sequence of low IR instructions in basic block
- **Output:** expression DAG for the block

Idea:
- Each node is labeled with either a variable, constant, or operator, e.g., y, 1, or $+$
- Each node is annotated with variables that hold the value, e.g., t
- Build DAG bottom-up
DAG Construction Algorithm

for each instruction I in basic block in execution order

if I has form $x = y \ op \ z$;
- Find a dag node annotated y, or create one; call it n_y
- Find a dag node annotated z, or create one; call it n_z
- Find a dag node labeled op with operands n_y and n_z, or create a one; call it n_x
- Remove annotation x from any node on which it appears.
- Add x to list of annotations for node n_x

else if I has form $x = y$;
- Find a dag node annotated y, or create one; call it n_y
- Add x to list of annotations of node n_y

else ...
DAG Construction Example

Basic block

\[t = y+1 \]
\[w = y+1 \]
\[y = z*t \]
\[t = t+1 \]
\[z = t*y \]
\[w = z \]
DAG Construction Example

Basic block

\[
\begin{align*}
t &= y + 1 \\
w &= y + 1 \\
y &= z \cdot t \\
t &= t + 1 \\
z &= t \cdot y \\
w &= z
\end{align*}
\]
DAG Construction Example

Basic block

t = y+1
w = y+1
y = z*t
t = t+1
z = t*y
w = z

\[
\begin{align*}
\text{y} & \to \text{t, w} \\
\text{1} & \to \text{t, w} \\
\end{align*}
\]
DAG Construction Example

Basic block

\[
\begin{align*}
 t &= y + 1 \\
 w &= y + 1 \\
 y &= z \times t \\
 t &= t + 1 \\
 z &= t \times y \\
 w &= z
\end{align*}
\]
DAG Construction Example

Basic block

t = y+1
w= y+1
y = z*t
t = t+1
z = t*y
w = z
DAG Construction Example

Basic block

\[
\begin{align*}
 t &= y + 1 \\
 w &= y + 1 \\
 y &= z \times t \\
 t &= t + 1 \\
 z &= t \times y \\
 w &= z
\end{align*}
\]
Basic block

\[
\begin{align*}
t &= y+1 \\
w &= y+1 \\
y &= z\times t \\
t &= t+1 \\
z &= t\times y \\
w &= z
\end{align*}
\]
DAG Construction Example

Basic block

\[
\begin{align*}
t &= y + 1 \\
w &= y + 1 \\
y &= z \cdot t \\
t &= t + 1 \\
z &= t \cdot y \\
w &= z
\end{align*}
\]

If only \(w \) is live at block exit