CS412/CS413

Introduction to Compilers
Tim Teitelbaum

Lecture 30: Loop Optimizations
and Pointer Analysis
07 Apr 08
Loop optimizations

• Now we know which are the loops

• Next: optimize these loops
 – Loop invariant code motion [last time]
 – Strength reduction of induction variables
 – Induction variable elimination
Induction Variables

• An induction variable is a variable in a loop, whose value is a function of the loop iteration number $v = f(i)$

• In compilers, this a linear function:

 $$f(i) = c*i + d$$

• Observation: linear combinations of linear functions are linear functions

 – Consequence: linear combinations of induction variables are induction variables
Families of Induction Variables

- **Basic induction variable**: a variable whose only definition in the loop body is of the form
 \[i = i + c \]
 where \(c \) is a loop-invariant value

- **Derived induction variables**: Each basic induction variable \(i \) defines a family of induction variables \(\text{Family}(i) \)
 - \(i \in \text{Family}(i) \)
 - \(k \in \text{Family}(i) \) if there is only one definition of \(k \) in the loop body, and it has the form \(k = c\cdot j \) or \(k = j + c \), where
 (a) \(j \in \text{Family}(i) \)
 (b) \(c \) is loop invariant
 (c) The only definition of \(j \) that reaches the definition of \(k \) is in the loop
 (d) There is no definition of \(i \) between the definitions of \(j \) and \(k \)
Representación

- Representación de variables de inducción de familia i por triples:
 - Denote variable de inducción básica i by <i, 1, 0>
 - Denote variable de inducción k=i*a+b by triple <i, a, b>
Finding Induction Variables

Scan loop body to find all basic induction variables

do

Scan loop to find all variables k with one assignment of form $k = j \cdot b$, where j is an induction variable $<i,c,d>$, and make k an induction variable with triple $<i,c \cdot b,d>$

Scan loop to find all variables k with one assignment of form $k = j \pm b$ where j is an induction variable with triple $<i,c,d>$, and make k an induction variable with triple $<i,c,b \pm d>$

until no more induction variables found
Strength Reduction

- **Basic idea:** replace expensive operations (multiplications) with cheaper ones (additions) in definitions of induction variables

```c
while (i<10) {
    j = ...;  // <i,3,1>
    a[j] = a[j] - 2;
    i = i+2;
}
```

- **Benefit:** cheaper to compute \(s = s+6 \) than \(j = 3\times i \)
 - \(s = s+6 \) requires an addition
 - \(j = 3\times i \) requires a multiplication

```c
while (i<10) {
    j = s;
    a[j] = a[j] - 2;
    i = i+2;
    s= s+6;
}
```
General Algorithm

- **Algorithm:**

 For each induction variable j with triple $<i,a,b>$ whose definition involves multiplication:

 1. create a new variable s
 2. replace definition of j with $j=s$
 3. immediately after $i=i+c$, insert $s = s+a*c$
 (here $a*c$ is constant)
 4. insert $s = a*i+b$ into preheader

- **Correctness:** transformation maintains invariant $s = a*i+b$
Strength Reduction

• Gives opportunities for copy propagation, dead code elimination

```c
s = 3*i+1;
while (i<10) {
    j = s;
    a[j] = a[j] -2;
    i = i+2;
    s= s+6;
}
```

```c
s = 3*i+1;
while (i<10) {
    a[s] = a[s] -2;
    i = i+2;
    s= s+6;
}
```
Induction Variable Elimination

• **Idea:** eliminate each basic induction variable whose only uses are in loop test conditions and in their own definitions $i = i+c$
 - rewrite loop test to eliminate induction variable

    ```
    s = 3*i+1;
    while (i<10) {
        a[s] = a[s] -2;
        i = i+2;
        s = s+6;
    }
    ```

• When are induction variables used only in loop tests?
 - Usually, after strength reduction
 - Use algorithm from strength reduction even if definitions of induction variables don’t involve multiplications
Induction Variable Elimination

- Rewrite test condition using derived induction variables
- Remove definition of basic induction variables (if not used after the loop)

```c
s = 3*i + 1;
while (i < 10) {
    a[s] = a[s] - 2;
    i = i + 2;
    s = s + 6;
}
```

```c
s = 3*i + 1;
while (s < 31) {
    a[s] = a[s] - 2;
    s = s + 6;
}
```
Induction Variable Elimination

For each basic induction variable i whose only uses are

- The test condition $i < u$
- The definition of i: $i = i + c$

- Take a derived induction variable k in family i, with triple $<i,c,d>$
- Replace test condition $i < u$ with $k < c* u + d$
- Remove definition $i = i + c$ if i is not live on loop exit
Where We Are

- Defined dataflow analysis framework
- Used it for several analyses
 - Live variables
 - Available expressions
 - Reaching definitions
 - Constant folding
- Loop transformations
 - Loop invariant code motion
 - Induction variables
- Next:
 - Pointer alias analysis
Pointer Alias Analysis

• Most languages use variables containing addresses
 – E.g. pointers (C,C++), references (Java), call-by-reference parameters (Pascal, C++, Fortran)

• Pointer aliases: multiple names for the same memory location, which occur when dereferencing variables that hold memory addresses

• Problem:
 – Don’t know what variables read and written by accesses via pointer aliases (e.g. *p=y; x=*p; p->f=y; x=p->f; etc.)
 – Need to know accessed variables to compute dataflow information after each instruction
Pointer Alias Analysis

- **Worst case scenarios**
 - \(*p = y \) may write any memory location
 - \(x = *p \) may read any memory location
- Such assumptions may affect the precision of other analyses

- **Example 1**: Live variables
 before any instruction \(x = *p \), all the variables may be live

- **Example 2**: Constant folding

 \[
 a = 1; \quad b = 2; \quad *p = 0; \quad c = a + b;
 \]

 - \(c = 3 \) at the end of code only if \(*p \) is not an alias for \(a \) or \(b \)!

- **Conclusion**: precision of result for all other analyses depends on the amount of alias information available
 - hence, it is a fundamental analysis
Alias Analysis Problem

- Goal: for each variable \(v \) that may hold an address, compute the set \(\text{Ptr}(v) \) of possible targets of \(v \)
 - \(\text{Ptr}(v) \) is a set of variables (or objects)
 - \(\text{Ptr}(v) \) includes stack- and heap-allocated variables (objects)

- Is a “may” analysis: if \(x \in \text{Ptr}(v) \), then \(v \) may hold the address of \(x \) in some execution of the program

- No alias information: for each variable \(v \), \(\text{Ptr}(v) = V \), where \(V \) is the set of all variables in the program
Simple Alias Analyses

- **Address-taken analysis:**
 - Consider $AT = \text{set of variables whose addresses are taken}$
 - Then, $Ptr(v) = AT$, for each pointer variable v
 - Addresses of heap variables are always taken at allocation sites (e.g., $x = \text{new int[2]; } x=\text{malloc(8);})$
 - Hence AT includes all heap variables

- **Type-based alias analysis:**
 - If v is a pointer (or reference) to type T, then $Ptr(v)$ is the set of all variables of type T
 - Example: $p->f$ and $q->f$ can be aliases only if p and q are references to objects of the same type
 - Works only for strongly-typed languages
Dataflow Alias Analysis

- **Dataflow analysis**: for each variable \(v \), compute points-to set \(\text{Ptr}(v) \) at each program point

- **Dataflow information**: set \(\text{Ptr}(v) \) for each variable \(v \)
 - Can be represented as a graph \(G \subseteq 2^{V \times V} \)
 - Nodes = \(V \) (program variables)
 - There is an edge \(v \rightarrow u \) if \(u \in \text{Ptr}(v) \)

\[
\begin{align*}
\text{Ptr}(x) &= \{y\} \\
\text{Ptr}(y) &= \{z,t\}
\end{align*}
\]
Dataflow Alias Analysis

- **Dataflow Lattice:** \((2^{V \times V}, \supseteq)\)
 - \(V \times V\) represents “every variable may point to every var.”
 - “may” analysis: top element is \(\emptyset\), meet operation is \(\cup\)

- **Transfer functions:** use standard dataflow transfer functions:
 \[
 \text{out}[I] = (\text{in}[I] - \text{kill}[I]) \cup \text{gen}[I]
 \]

 \[
 \begin{align*}
 p = \text{addr } q & \quad \text{kill}[I] = \{p\} \times V \quad \text{gen}[I] = \{<p,q>\} \\
 p = q & \quad \text{kill}[I] = \{p\} \times V \quad \text{gen}[I] = \{p\} \times \text{Ptr}(q) \\
 p = *q & \quad \text{kill}[I] = \{p\} \times V \quad \text{gen}[I] = \{p\} \times \text{Ptr}(\text{Ptr}(q)) \\
 *p = q & \quad \text{kill}[I] = \ldots \quad \text{gen}[I] = \text{Ptr}(p) \times \text{Ptr}(q)
 \end{align*}
 \]

 For all other instruction, \(\text{kill}[I] = \{\}, \text{gen}[I] = \{\}\)

- **Transfer functions are monotonic, but not distributive!**
Alias Analysis Example

Program

```
x=&a;
y=&b;
c=&i;
if(i) x=y;
*x=c;
```

CFG

```
x=&a
y=&b
c=&i
if(i)
```

```
x=y
```

```
*x=c
```

Points-to Graph

(at the end of program)

Graph:

- `x` points to `a`
- `y` points to `b`
- `i` points to `i`
- `c` points to `c`
Alias Analysis Uses

- Once alias information is available, use it in other dataflow analyses

- **Example:** Live variable analysis

 Use alias information to compute $use[I]$ and $def[I]$ for load and store statements:

 $$
 x = *y \quad use[I] = \{y\} \cup \text{Ptr}(y) \quad def[I] = \{x\} \\
 *x = y \quad use[I] = \{x,y\} \quad def[I] = \text{Ptr}(x)
 $$