Lecture 28: Dataflow Analysis Instances
2 Apr 08
Dataflow Analysis

• Dataflow analysis
 – sets up system of equations
 – iteratively computes MFP
 – Terminates because transfer functions are monotonic and lattice has finite height

• Other possible solutions: FP, MOP, IDEAL
• All are safe solutions, but some are more precise:
 \[\text{FP} \subseteq \text{MFP} \subseteq \text{MOP} \subseteq \text{IDEAL} \]
• MFP = MOP if transfer functions are distributive
• MOP and IDEAL are intractable
• Compilers use dataflow analysis and MFP
Dataflow Analysis Instances

• Apply dataflow framework to several analysis problems:
 – Live variable analysis
 – Available expressions
 – Reaching definitions
 – Constant folding

• Discuss:
 – Implementation issues
 – Classification of dataflow analyses
Problem 1: Live Variables

• Compute live variables at each program point
• Live variable = variable whose value may be used later, in some execution of the program

• Dataflow information: sets of live variables
• Example: variables \{x,z\} may be live at program point p
• Is a backward analysis

• Let \(V \) = set of all variables in the program
• Lattice \((L, \sqsubseteq)\), where:
 - \(L = 2^V \) (power set of \(V \), i.e., set of all subsets of \(V \))
 - Partial order \(\sqsubseteq \) is set inclusion: \(\sqsupseteq \)
 \[S_1 \subseteq S_2 \iff S_1 \supseteq S_2 \]
LV: The Lattice

- Consider set of variables \(V = \{x, y, z\} \)
- Partial order: \(\supseteq \)
- Set \(V \) is finite implies lattice has finite height
- Meet operator: \(\sqcap \)
 (set union: out\([B]\) is union of in\([B']\), for all \(B' \in \text{succ}(B) \))
- Top element: \(\emptyset \)
 (empty set)
- Smaller sets of live variables = more precise analysis
- All variables may be live = least precise
LV: Dataflow Equations

• Equations:
 \[
 \text{in}[B] = F_B(\text{out}[B]), \text{ for all } B
 \]
 \[
 \text{out}[B] = \bigcup \{\text{in}[B'] | B' \in \text{succ}(B)\}, \text{ for all } B
 \]
 \[
 \text{out}[B_e] = X_0
 \]

• Meaning of union meet operator:
 “A variable is live at the end of a basic block B if it is live at the beginning of one of its successor blocks”
LV: Transfer Functions

- Transfer functions for basic blocks are composition of transfer functions of instructions in the block.
- Define transfer functions for instructions.

- General form of transfer functions:
 \[F_i(X) = (X - \text{def}[I]) \cup \text{use}[I] \]
 where:
 - \(\text{def}[I] \) = set of variables defined (written) by \(I \)
 - \(\text{use}[I] \) = set of variables used (read) by \(I \)

- Meaning of transfer functions:
 “Variables live before instruction \(I \) include: (1) variables live after \(I \), but not written by \(I \), and (2) variables used by \(I \)”
LV: Transfer Functions

• Define def/use for each type of instruction

if I is \(x = y \text{ OP } z \): \quad \text{use}[I] = \{y, z\} \quad \text{def}[I] = \{x\}
if I is \(x = \text{ OP } y \) : \quad \text{use}[I] = \{y\} \quad \text{def}[I] = \{x\}
if I is \(x = y \) : \quad \text{use}[I] = \{y\} \quad \text{def}[I] = \{x\}
if I is \(x = \text{addr } y \) : \quad \text{use}[I] = \{} \quad \text{def}[I] = \{x\}
if I is if (x) : \quad \text{use}[I] = \{x\} \quad \text{def}[I] = \{}
if I is return x : \quad \text{use}[I] = \{x\} \quad \text{def}[I] = \{}
if I is \(x = f(y_1, \ldots, y_n) \) : \quad \text{use}[I] = \{y_1, \ldots, y_n\} \quad \text{def}[I] = \{x\}

• Transfer functions \(F_i(X) = (X - \text{def}[I]) \cup \text{use}[I] \)

• For each \(F_i \), \text{def}[I] and \text{use}[I] are constants: they don’t depend on input information \(X \)
LV: Distributivity

• Are transfer functions: \(F_1(X) = (X - \text{def}[I]) \cup \text{use}[I] \) distributive?

• Since \(\text{def}[I] \) is constant: \(X - \text{def}[I] \) is distributive:
 \[
 (X_1 \cup X_2) - \text{def}[I] = (X_1 - \text{def}[I]) \cup (X_2 - \text{def}[I])

 \text{because: } (a \cup b) - c = (a - c) \cup (b - c)
 \]

• Since \(\text{use}[I] \) is constant: \(Y \cup \text{use}[I] \) is distributive:
 \[
 (Y_1 \cup Y_2) \cup \text{use}[I] = (Y_1 \cup \text{use}[I]) \cup (Y_2 \cap \text{use}[I])

 \text{because: } (a \cup b) \cup c = (a \cup c) \cup (b \cup c)
 \]

• Put pieces together: \(F_1(X) \) is distributive
 \[
 F_1(X_1 \cup X_2) = F_1(X_1) \cup F_1(X_2)
 \]
Live Variables: Summary

• Lattice: \((2^V, \supseteq)\); has finite height
• Meet is set union, top is empty set
• Is a backward dataflow analysis

• Dataflow equations:
 \[
 \text{in}[B] = F_B(\text{out}[B]), \text{ for all } B \\
 \text{out}[B] = \bigcup \{ \text{in}[B'] | B' \in \text{succ}(B) \}, \text{ for all } B \\
 \text{out}[B_e] = X_0
 \]

• Transfer functions: \(F_I(X) = (X - \text{def}[I]) \cup \text{use}[I]\)
 - are monotonic and distributive

• Iterative solving of dataflow equation:
 - terminates
 - computes MOP solution
Problem 2: Available Expressions

- Compute available expressions at each program point
- Available expression = expression evaluated in all program executions, and its value would be the same if re-evaluated
- Is similar to available copies for constant propagation

- Dataflow information: sets of available expressions
- Example: expressions \{x+y, y-z\} are available at point p
- Is a forward analysis

- Let \(E \) = set of all expressions in the program
- Lattice \((L, \sqsubseteq) \), where:
 - \(L = 2^E \) (power set of \(E \), i.e., set of all subsets of \(E \))
 - Partial order \(\sqsubseteq \) is set inclusion: \(\sqsupseteq \)
 \[S_1 \sqsubseteq S_2 \text{ iff } S_1 \supseteq S_2 \]
AE: The Lattice

• Consider set of expressions = \{x*z, x+y, y-z\}
• Denote e = x*z, f = x+y, g = y-z

• Partial order: \subseteq
• Set E is finite implies lattice has finite height

• Meet operator: \cap
 (set intersection)

• Top element: \{e,f,g\}
 (set of all expressions)

• Larger sets of available expressions = more precise analysis
• No available expressions = least precise
AE: Dataflow Equations

• Equations:
 \[\text{out}[B] = F_B(\text{in}[B]), \text{ for all } B \]
 \[\text{in}[B] = \cap \{\text{out}[B'] \mid B' \in \text{pred}(B)\}, \text{ for all } B \]
 \[\text{in}[B_s] = X_0 \]

• Meaning of intersection meet operator:
 “An expression is available at entry of block B if it is available at exit of all predecessor nodes”
AE: Transfer Functions

• Define transfer functions for instructions

• General form of transfer functions:

\[F_I(X) = (X - \text{kill}[I]) \cup \text{gen}[I] \]

where:

\text{kill}[I] = \text{expressions “killed” by } I
\text{gen}[I] = \text{new expressions “generated” by } I

• Note: this kind of transfer function is typical for many dataflow analyses!

• Meaning of transfer functions: “Expressions available after instruction \(I \) include: (1) expressions available before \(I \), but not killed by \(I \), and (2) expressions generated by \(I \)”
AE: Transfer Functions

- Define kill/gen for each type of instruction

 \[\text{if } I \text{ is } x = y \, \text{OP} \, z : \quad \text{gen}[I] = \{y \, \text{OP} \, z\} \quad \text{kill}[I] = \{E | x \in E\} \]

 \[\text{if } I \text{ is } x = \text{OP} \, y : \quad \text{gen}[I] = \{\text{OP} \, z\} \quad \text{kill}[I] = \{E | x \in E\} \]

 \[\text{if } I \text{ is } x = y : \quad \text{gen}[I] = \{} \quad \text{kill}[I] = \{E | x \in E\} \]

 \[\text{if } I \text{ is } x = \text{addr} \, y : \quad \text{gen}[I] = \{} \quad \text{kill}[I] = \{E | x \in E\} \]

 \[\text{if } I \text{ is } \text{if} (x) : \quad \text{gen}[I] = \{} \quad \text{kill}[I] = \{} \]

 \[\text{if } I \text{ is } \text{return} \, x \quad \text{gen}[I] = \{} \quad \text{kill}[I] = \{} \]

 \[\text{if } I \text{ is } x = f(y_1, \ldots, y_n) : \quad \text{gen}[I] = \{} \quad \text{kill}[I] = \{E | x \in E\} \]

- Transfer functions \(F_I(X) = (X - \text{kill}[I]) \cup \text{gen}[I] \)

- \(\ldots \text{ how about } x = x \, \text{OP} \, y? \)
Available Expressions: Summary

- Lattice: \((2^E, \subseteq)\); has finite height
- Meet is set intersection, top element is \(E\)
- Is a forward dataflow analysis

- Dataflow equations:
 \[
 \text{out}[B] = F_B(\text{in}[B]), \text{ for all } B
 \]
 \[
 \text{in}[B] = \cap \{\text{out}[B'] | B' \in \text{pred}(B)\}, \text{ for all } B
 \]
 \[
 \text{in}[B_s] = X_0
 \]

- Transfer functions: \(F_I(X) = (X - \text{kill}[I]) \cup \text{gen}[I]\)
 - are monotonic and distributive

- Iterative solving of dataflow equation:
 - terminates
 - computes MOP solution
Problem 3: Reaching Definitions

• Compute reaching definitions for each program point
• Reaching definition = definition of a variable whose assigned value may be observed at current program point in some execution of the program

• Dataflow information: sets of reaching definitions
• Example: definitions \{d2, d7\} may reach program point \(p\)
• Is a forward analysis

• Let \(D\) = set of all definitions (assignments) in the program
• Lattice \((D, \subseteq)\), where:
 - \(L = 2^D\) (power set of \(D\))
 - Partial order \(\subseteq\) is set inclusion: \(\supseteq\)
 \[S_1 \subseteq S_2 \iff S_1 \supseteq S_2 \]
RD: The Lattice

- Consider set of expressions = \{d1, d2, d3\}
 where d1: x = y, d2: x=x+1, d3: z=y-x

- Partial order: \supseteq

- Set D is finite implies lattice has finite height

- Meet operator: \bigvee
 (set union)

- Top element: \emptyset
 (empty set)

- Smaller sets of reaching definitions = more precise analysis

- All definitions may reach current point = least precise
RD: Dataflow Equations

• Equations:

\[\text{out}[B] = F_B(\text{in}[B]), \text{ for all } B \]
\[\text{in}[B] = \bigcup \{ \text{out}[B'] \mid B' \in \text{pred}(B) \}, \text{ for all } B \]
\[\text{in}[B_s] = X_0 \]

• Meaning of intersection meet operator:

“A definition reaches the entry of block B if it reaches the exit of at least one of its predecessor nodes”
RD: Transfer Functions

• Define transfer functions for instructions

• General form of transfer functions:

\[F_i(X) = (X - \text{kill}[I]) \cup \text{gen}[I] \]

where:

\[\text{kill}[I] = \text{definitions “killed” by } I \]
\[\text{gen}[I] = \text{definitions “generated” by } I \]

• Meaning of transfer functions: “Reaching definitions after instruction I include: (1) reaching definitions before I, but not killed by I, and (2) reaching definitions generated by I”
RD: Transfer Functions

- Define kill/gen for each type of instruction
- If \(I \) is a definition \(d \) that defines \(x \):
 \[
 \text{gen}[I] = \{d\} \quad \text{kill}[I] = \{d' \mid d' \text{ defines } x\}
 \]
- If \(I \) is not a definition:
 \[
 \text{gen}[I] = \{} \quad \text{kill}[I] = \{}
 \]
- Transfer functions \(F_I(X) = (X - \text{kill}[I]) \cup \text{gen}[I] \)
- They are monotonic and distributive
 - For each \(F_I \), \(\text{kill}[I] \) and \(\text{gen}[I] \) are \textit{constants}: they don't depend on input information \(X \)
Reaching Definitions: Summary

- Lattice: \((2^P, \supseteq)\); has finite height
- Meet is set union, top element is \(\emptyset\)
- Is a forward dataflow analysis
- Dataflow equations:
 \[
 \text{out}[B] = F_B(\text{in}[B]), \text{ for all } B
 \]
 \[
 \text{in}[B] = \cup \{\text{out}[B'] | B' \in \text{pred}(B)\}, \text{ for all } B
 \]
 \[
 \text{in}[B_s] = X_0
 \]
- Transfer functions: \(F_I(X) = (X - \text{kill}[I]) \cup \text{gen}[I]\)
 - are monotonic and distributive
- Iterative solving of dataflow equation:
 - terminates
 - computes MOP solution
Implementation

• Lattices in these analyses = power sets
• Information in these analyses = subsets of a set
• How to implement subsets?

1. Set implementation
 - Data structure with as many elements as the subset has
 - Usually list implementation

2. Bitvectors:
 - Use a bit for each element in the overall set
 - Bit for element x is: 1 if x is in subset, 0 otherwise
 - Example: S = \{a,b,c\}, use 3 bits
 - Subset \{a,c\} is 101, subset \{b\} is 010, etc.
Implementation Tradeoffs

- **Advantages of bitvectors:**
 - Efficient implementation of set union/intersection:
 - set union is bitwise “or” of bitvectors
 - set intersection is bitwise “and” of bitvectors
 - **Drawback:** inefficient for subsets with few elements

- **Advantage of list implementation:**
 - Efficient for sparse representation
 - **Drawback:** inefficient for set union or intersection

- In general, bitvectors work well if the size of the (original) set is linear in the program size
Problem 4: Constant Propagation

• Compute constant variables at each program point
• **Constant variable** = variable having a constant value on all program executions

• Dataflow information: sets of constant values
• Example: \{x=2, y=3\} at program point p
• Is a forward analysis

• Let \(V = \text{set of all variables in the program}, \ nvar = |V| \)
• Let \(N = \text{set of integer numbers} \)
• Use a lattice over the set \(V \times N \)
• Construct the lattice starting from a flat lattice for \(N \)
Flat Lattice for N

- Lattice \(L = (N \cup \{\top, \bot\}, \sqsubseteq_F) \)
 - \(\bot \sqsubseteq_F n, \) for all \(n \in N \)
 - Meaning of \(\top \): “Not known to be constant”
 - \(n \sqsubseteq_F \top, \) for all \(n \in N \)
 - Meaning of \(\bot \): “Known to be not constant”
 - Distinct integer constants are not comparable

\[
\begin{array}{c}
\top \\
| \\
-2 \quad -1 \quad 0 \quad 1 \quad 2 \quad \ldots
\end{array}
\]

Note: meet of any two distinct numbers is \(\bot \)

Note: meet of any number and \(\top \) is that number
Constant Folding Lattice

- **Flat lattice:** $L = (N^*, \sqsubseteq_F)$, where $N^* = N \cup \{\top, \bot\}$

- **Constant folding lattice:** $L' = (V \rightarrow N^*, \sqsubseteq_C)$

- Represent a function in $V \rightarrow N^*$ as a set of bindings:
 $\{ v_1 = c_1, v_2 = c_2, \ldots, v_n = c_n \}$

- Define partial order \sqsubseteq_C on $V \rightarrow N^*$ as:
 $X \sqsubseteq_C Y$ iff $X(v) \sqsubseteq_F Y(v)$ for each variable v

\[
X = \{ v_1 = c_1, v_2 = c_2, \ldots \} \sqsubseteq_C \\
\quad \sqsubseteq_F \quad \sqsubseteq_F \\
Y = \{ v_1 = c'_1, v_2 = c'_2, \ldots \}
\]
CF: Transfer Functions

• Transfer function for instruction I:

 $F_I(X) = (X - \text{kill}[I]) \cup \text{gen}[I]$

 where:

 $\text{kill}[I] = \text{constants “killed” by } I$

 $\text{gen}[I] = \text{constants “generated” by } I$

• If I is $v = c$ (constant):

 $\text{gen}[I] = \{ v = c \}$

 $\text{kill}[I] = \{ v = n \mid \text{for all } n \in \mathbb{N}^* \}$

• If I is $v = u+w$:

 $\text{gen}[I] = \{ v = k \}$

 $\text{kill}[I] = \{ v = n \mid \text{for all } n \in \mathbb{N}^* \}$

 where

 $k = X(u)+X(w)$ if $X(u)$ and $X(w)$ are both constants

 $k = \top$ if $X(u) = \bot$ or $X(w) = \bot$

 $k = \top$ otherwise
CF: Transfer Functions

• Transfer function for instruction I:
 \[F_I(X) = (X - \text{kill}[I]) \cup \text{gen}[I] \]

• Here $\text{gen}[I]$ is not constant, it depends on X

• However transfer functions are monotonic

• … but are transfer functions distributive?
CF: Distributivity?

- Example:

\[
\begin{align*}
\{x=2, \ y=3, \ z=\top\} & \quad \text{At join point, apply meet operator} \\
\{x=3, \ y=2, \ z=\top\} & \\
\{x=\?, \ y=\?, \ z=?\} & \\
\{x=\?, \ y=\?, \ z=?\} & \\
\end{align*}
\]

- Then use transfer function for \(z=x+y\)
CF: Distributivity?

• Example:

\[
\begin{align*}
\{ x=2, y=3, z=\top \} & \quad \text{--} & \quad \{ x=3, y=2, z=\top \} \\
\{ x=2, y=3 \} & \quad \text{--} & \quad \{ x=\bot, y=\bot, z=\top \} \\
\{ x=\bot, y=\bot \} & \quad \text{--} & \quad \{ x=\bot, y=\bot, z=\bot \}
\end{align*}
\]

• Dataflow result (MFP) at the end: \(\{ x=\bot, y=\bot, z=\bot \} \)
• MOP solution at the end?
CF: Distributivity?

• Example:

{x=2, y=3, z=⊤} - {x=2, y=3, z=⊥} - {x=3, y=2, z=⊤} - {x=⊥, y=⊥, z=⊤}

• Dataflow result (MFP) at the end: {x=⊥, y=⊥, z=⊥}

• MOP solution at the end: {x=⊥, y=⊥, z=5}!
CF: Distributivity?

- **Example:**

 \[
 \begin{align*}
 x &= 2 \\
y &= 3 \\
z &= x + y
 \end{align*}
 \]

 \[
 \begin{align*}
x &= 3 \\
y &= 2 \\
z &= x + y
 \end{align*}
 \]

- **Reason for MOP ≠ MFP:**

 transfer function \(F \) of \(z = x + y \) is not distributive!

 \[
 F(X_1 \cap X_2) \neq F(X_1) \cap F(X_2)
 \]

 where \(X_1 = \{ x=2, y=3, z=\top \} \) and \(X_2 = \{ x=3, y=2, z=\top \} \)
Classification of Analyses

- **Forward analyses**: information flows from
 - CFG entry block to CFG exit block
 - Input of each block to its output
 - Output of each block to input of its successor blocks
 - *Examples*: available expressions, reaching definitions, constant folding

- **Backward analyses**: information flows from
 - CFG exit block to entry block
 - Output of each block to its input
 - Input of each block to output of its predecessor blocks
 - *Example*: live variable analysis
Another Classification

• “may” analyses:
 - information describes a property that MAY hold in SOME executions of the program
 - Usually: \(\Pi = \cup, \top = \emptyset \)
 - Hence, initialize info to empty sets
 - Examples: live variable analysis, reaching definitions

• “must” analyses:
 - information describes a property that MUST hold in ALL executions of the program
 - Usually: \(\Pi = \cap, \top = \mathbb{S} \)
 - Hence, initialize info to the whole set
 - Examples: available expressions