Lattices

- **Lattice:**
 - Set augmented with a partial order relation \(\sqsubseteq\)
 - Each subset has a LUB and a GLB
 - Can define: meet \(\sqcap\), join \(\sqcup\), top \(\top\), bottom \(\bot\)

- **Use lattice** to express information about a point in a program, where \(S_1 \sqsubseteq S_2\) means “\(S_1\) is less or equally precise as \(S_2\)”

- **To compute information:** build constraints that describe how the lattice information changes
 - Effect of instructions: transfer functions
 - Effect of control flow: meet operation
Transfer Functions

- Let L = dataflow information lattice

- Transfer function $F_I : L \rightarrow L$ for each instruction I
 - Describes how I modifies the information in the lattice
 - If $in[I]$ is info before I and $out[I]$ is info after I, then
 - Forward analysis: $out[I] = F_I(in[I])$
 - Backward analysis: $in[I] = F_I(out[I])$

- Transfer function $F_B : L \rightarrow L$ for each basic block B
 - Is composition of transfer functions of instructions in B
 - If $in[B]$ is info before B and $out[B]$ is info after B, then
 - Forward analysis: $out[B] = F_B(in[B])$
 - Backward analysis: $in[B] = F_B(out[B])$
Control Flow

• Meet operation models how to combine information at split/join points in the control flow
 – If in[B] is info before B and out[B] is info after B, then:
 Forward analysis: \(\text{in}[B] = \bigwedge \{ \text{out}[B'] \mid B' \in \text{pred}(B) \} \)
 Backward analysis: \(\text{out}[B] = \bigwedge \{ \text{in}[B'] \mid B' \in \text{succ}(B) \} \)

• Can alternatively use join operation \(\bigvee \) (equivalent to using the meet operation \(\bigwedge \) in the reversed lattice)
Treatment as $F: L^n \rightarrow L^n$

- For a data flow analysis problem
 - With lattice L
 - Basic blocks B_1, B_2, ..., B_n
 - Transfer functions F_1, F_2, ..., F_n

- Treat as
 - Iteration of function F: $L^n \rightarrow L^n$
 $\top, F(\top), F(F(\top)), ...$
 - Where F summarizes effect of one sweep for all blocks B in a given order of either
 $\text{out}[B] = ...$ and $\text{in}[B] = F_B(\text{out}[B])$ (for backward)
 $\text{in}[B] = ...$ and $\text{out}[B] = F_B(\text{in}[B])$ (for forward)
Monotonicity

- Function $F : L \rightarrow L$ is monotonic if $x \preceq y$ implies $F(x) \preceq F(y)$
- A monotonic function is “order preserving”
- Contrast with

 For all x, $F(x) \preceq x$
- F is monotonic but $C = F(B) \npreceq B$
Monotonicity of Meet

- Meet operation is monotonic over \(L \times L \), i.e.,
 \[
 x_1 \sqsubseteq y_1 \text{ and } x_2 \sqsubseteq y_2 \implies (x_1 \sqcap x_2) \sqsubseteq (y_1 \sqcap y_2)
 \]

- **Proof:**
 - any lower bound of \(\{x_1, x_2\} \) is also a lower bound of \(\{y_1, y_2\} \), because \(x_1 \sqsubseteq y_1 \) and \(x_2 \sqsubseteq y_2 \)
 - \(x_1 \sqcap x_2 \) is a lower bound of \(\{x_1, x_2\} \)
 - So \(x_1 \sqcap x_2 \) is a lower bound of \(\{y_1, y_2\} \)
 - But \(y_1 \sqcap y_2 \) is the greatest lower bound of \(\{y_1, y_2\} \)
 - Hence \((x_1 \sqcap x_2) \sqsubseteq (y_1 \sqcap y_2) \)
Fixed Points

• x in lattice L is a **fixed point of function** F iff x=F(x)
• Tarski-Knaster Fixed Point Theorem. The fixed points of a monotonic function on a complete lattice form a complete lattice. In particular, there is a maximal fixed point (MFP).
Chains in Lattices

- A chain in a lattice L is a totally ordered subset S of L: $x \sqsubseteq y$ or $y \sqsubseteq x$ for any $x, y \in S$

- In other words:
 Elements in a totally ordered subset S can be indexed to form an ascending sequence:

 $x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \ldots$

 or they can be indexed to form a descending sequence:

 $x_1 \sqsupseteq x_2 \sqsupseteq x_3 \sqsupseteq \ldots$

- Height of a lattice = size of its largest chain
- Lattice with finite height: only has finite chains
Iterative Computation of Solution

• Let F be a monotonic function over lattice L
• $\top \subseteq F(\top) \subseteq F(F(\top)) \subseteq \ldots$ is a descending chain
• If L has finite height, the chain ends at the maximal fixed point of F (MFP)
Multiple Solutions

• Dataflow equations may have multiple solutions

• **Example:** live variables

 Equations:
 \[I_1 = I_2 \setminus \{y\} \]
 \[I_3 = (I_4 \setminus \{x\}) \cup \{y\} \]
 \[I_2 = I_1 \cup I_3 \]
 \[I_4 = \{x\} \]

 Solution 1:
 \[I_1 = \emptyset, \quad I_2 = \{y\}, \quad I_3 = \{y\}, \quad I_4 = \{x\} \]

 Solution 2:
 \[I_1 = \{x\}, \quad I_2 = \{x, y\}, \quad I_3 = \{y\}, \quad I_4 = \{x\} \]

For any solution \(FP \) of the dataflow equations \(FP \subseteq MFP \)
FP is said to be a conservative or safe solution
Meet Over Paths Solution (forward)

- Is MFP the best solution to an analysis problem?

- Alternative to MFP: a different way to compute solution
 - Let G be the control flow graph with start block B_0
 - For each path $p_n = [B_0, B_1, \ldots, B_n]$ from B_0 to block B_n
 define $F[p_n] = F_{B_{n-1}} \circ F_{B_{n-1}} \circ \ldots \circ F_{B_0}$
 - Compute solution as
 $$\text{in}[B_n] = \prod \{ F[p_n](\text{start value}) | \text{all paths } p_n \text{ from } B_0 \text{ to } B_n \}$$
- This solution is the Meet Over Paths (MOP) solution for block B_n
MFP versus MOP

• **Precision**: MOP solution is at least as precise as MFP
 \[\text{MFP} \sqsubseteq \text{MOP} \]

• **Why not use MOP?**
 1. **Exponential number of paths**: for a program consisting of a sequence of \(N \) if statement, there will \(2^N \) paths in the control flow graph
 2. **Infinite number of paths**: for loops in the CFG
Distributivity

• Function $F : L \rightarrow L$ is **distributive** if
 \[F(x \cap y) = F(x) \cap F(y) \]

• **Property:** F is monotonic iff $F(x \cap y) \subseteq F(x) \cap F(y)$
 - any distributive function is monotonic!
Importance of Distributivity

• **Property:** if transfer functions are *distributive*, then the solution to the dataflow equations is identical to the meet-over-paths solution

\[\text{MFP} = \text{MOP} \]

• For distributive transfer functions, can compute the intractable MOP solution using the iterative fixed-point algorithm
Better Than MOP?

• Is MOP the best solution to the analysis problem?

• MOP computes solution for all paths in the CFG

• There may be paths that will never occur in any execution

• So MOP is conservative

• IDEAL = solution that takes into account only paths that occur in some execution

• This is the best solution

• … but it is undecidable
Dataflow Equations

• Solve equations: use an iterative algorithm
 - Initialize in[B_s] = start value
 - Initialize everything else to ⊤
 - Repeatedly apply rules
 - Stop when reach a fixed point
Kildall Algorithm (forward)

\[\text{in}[B_S] = \text{start value} \]
\[\text{out}[B] = \top, \text{for all } B \]

\textbf{repeat} \\
\hspace{1em} \textbf{for} each basic block \(B \neq B_S \) \\
\hspace{2em} \text{in}[B] = \cap \{ \text{out}[B'] \mid B' \in \text{pred}(B) \} \\
\hspace{1em} \textbf{for} each basic block \(B \) \\
\hspace{2em} \text{out}[B] = F_B(\text{in}[B]) \\
\textbf{until} no change
Efficiency

• Algorithm is inefficient
 - Effects of basic blocks re-evaluated even if the input information has not changed

• Better: re-evaluate blocks only when necessary

• Use a worklist algorithm
 - Keep of list of blocks to evaluate
 - Initialize list to the set of all basic blocks
 - If out[B] changes after evaluating out[B] = F_B(in[B]), then add all successors of B to the list
Worklist Algorithm (forward)

\[\text{in}[B_S] = \text{start value} \]
\[\text{out}[B] = \top, \text{for all } B \]
\[\text{worklist} = \text{set of all basic blocks } B \]

\textbf{repeat}

\textbf{remove} a node \(B \) from the worklist
\[\text{in}[B] = \cap \{ \text{out}[B'] | B' \in \text{pred}(B) \} \]
\[\text{out}[B] = F_B(\text{in}[B]) \]
\textbf{if} out\([B]\) has changed \textbf{then}
\[\text{worklist} = \text{worklist} \cup \text{succ}(B) \]

\textbf{until} worklist = \(\emptyset \)
Correctness

• Initial algorithm is correct
 – If dataflow information does not change in the last iteration, then it satisfies the equations

• Worklist algorithm is correct
 – Maintains the invariant that
 \[\text{in}[B] = \prod \{\text{out}[B'] | B' \in \text{pred}(B)\} \]
 \[\text{out}[B] = F_B(\text{in}[B]) \]
 for all the blocks \(B \) not in the worklist
 – At the end, worklist is empty
Summary

• Dataflow analysis
 – sets up system of equations
 – iteratively computes MFP
 – Terminates because transfer functions are monotonic and lattice has finite height

• Other possible solutions: FP, MOP, IDEAL
• All are safe solutions, but some are more precise:
 \[\text{FP} \sqsubseteq \text{MFP} \sqsubseteq \text{MOP} \sqsubseteq \text{IDEAL} \]
• MFP = MOP if distributive transfer functions

• MOP and IDEAL are intractable
• Compilers use dataflow analysis and MFP