Static Attribute Evaluation

• Analyze the grammar and determine a fixed tree traversal scheme (with interleaved evaluations) such that for any possible derivation tree, evaluations will be in topological order

• **Partitioned attribute grammars** are a large class that lends itself to efficient analysis and evaluation
Plans

• Each production $X_0 \rightarrow X_1...X_n$ will have one associated plan.

• A plan is a linear sequence of instructions, where an instruction is one of:
 - `EVAL X_i.a` evaluate attribute a of symbol X_i
 - `VISIT(r,i)` r-th visit to neighbor i
 [child 0 = parent]

• If-then-else’s in plans would permit different execution orders in different contexts, but we chose to allow only straight-line plans for simplicity and efficiency.
Coroutine Relationship

- VISIT instructions act as coroutine calls

\[\text{VISIT}(0, i) \quad \text{VISIT}(1, i) \quad \text{VISIT}(n, i) \]

\[\text{VISIT}(0, 0) \quad \text{VISIT}(1, 0) \quad \text{VISIT}(n, 0) \]

- VISIT instructions act as coroutine calls
The attributes of X_i constitute an interface between the plans for p_1 and p_2.

- The plan for p_1 evaluates inherited attributes of X_i
- The plan for p_2 evaluates synthesized attributes of X_i
Evaluation Across the Interface

• VISIT instructions act as coroutine calls
Consistency of Plans

- The plan for p_1 must be consistent with the plans for all productions
 \[X_i \rightarrow \alpha \]
- The plan for p_2 must be consistent with the plans for all productions
 \[A \rightarrow \alpha \ X_i \beta \]
Plans are Fragments of Topological Orders

- The plans must be constructed so that for any derivation tree T, when the plan instances are “wired up” by VISITs, the order of EVALs are a topological order for $D(T)$
AG for which no such plans exist

\[Z \rightarrow s \, X_1 \, X_2 \]
\[x_1.a = x_2.d \]
\[X_1.c = 1 \]
\[x_2.a = x_1.d \]
\[X_2.c = 2 \]

\[Z \rightarrow t \, X_1 \, X_2 \]
\[X_1.a = 3 \]
\[X_1.c = X_2.b \]
\[X_2.a = 4 \]
\[X_2.c = X_1.b \]

\[X \rightarrow u \]
\[X.b = X.a \]
\[X.d = X.c \]
AG for which no such plans exist
UP and DOWN

\[\text{UP}(0, p_1, i) \rightarrow \text{instruction_pointer} \]
\[\text{UP}(1, p_1, i) \rightarrow \text{instruction_pointer} \]
\[\text{UP}(n, p_1, i) \rightarrow \text{instruction_pointer} \]

\[\text{DOWN}(0, p_2) \rightarrow \text{instruction_pointer} \]
\[\text{DOWN}(1, p_2) \rightarrow \text{instruction_pointer} \]
\[\text{DOWN}(n, p_2) \rightarrow \text{instruction_pointer} \]
Evaluator

node := root;
ip := DOWN(0, root.rule);
repeat
 case state of
 Xi.a: {
 evaluate Xi.a;
 increment ip;
 }
 VISIT(r, i), i>0: { /* child visit */
 ip := DOWN(r, Xi.rule);
 node := Xi;
 }
 VISIT(r,0): { /* parent visit */
 ip := UP(r, node.parent.rule, node.child_number);
 node = node.parent;
 }
 end case
until node = root and instruction at ip = VISIT(1,0);
Partitions

• If such plans are to exist, there must exist, for each nonterminal X, a partition of $A(X)$ into classes $A_{2n}(X)$, $A_{2n-1}(X)$, …, $A_2(X)$, $A_1(X)$, where
 - even $A_i(X)$ are subsets of $IA(X)$
 - odd $A_i(X)$ are subsets of $SA(X)$

s.t., for every derivation tree T, and every nonterminal instance X in T, the attribute instances of X can be evaluated in the order $A_{2n}(X)$, $A_{2n-1}(X)$, …, $A_2(X)$, $A_1(X)$. Within each $A_i(X)$, the order or evaluation is unconstrained and may differ from plan to plan.
Partitions in Plans

- Every plan involving X_i must respect the partitioning of $A(X_i)$
Partitioned Attribute Grammar

• If, in addition to the existence of the partitions, the grammar is locally acyclic, then it is called partitioned.
Computing Plans from Partitions

• Suppose, for each nonterminal X, we know valid partition $A_{2n}(X), A_{2n-1}(X), \ldots, A_2(X), A_1(X)$

• To compute the plan for production p: $X_0 \rightarrow X_1 \ldots X_n$
 - Start with D_p, the direct dependency graph of p
 - For each i in $[0..n]$, and each partition j for attributes of X_i, collapse all input attribute occurrences of the partition class $A_j(X_i)$ into one node labeled $\text{VISIT}(*,i)$ merging edges
 - Add edges between consecutive partition classes of the given X_i
 - Topological sort the resulting graph and fill in visit numbers in place of *s
Example

Z → X₁ X₂
 X₁.a = 1
 X₂.a = X₁.b
 X₁.c = X₂.b
 X₂.c = X₁.d
 S.m = X₂.d

X → u
 X.b = X.a
 X.d = X.c

Partitioning of A(X) = \{\{a\}\{b\}\{c\}\{d\}\}
Example

$Z \rightarrow X_1 X_2$

Partitioning of $A(X) = \{\{a\}\{b\}\{c\}\{d\}\}$
Example

Z → X₁ X₂

Partitioning of $A(X) = \{\{a\}\{b\}\{c\}\{d\}\}$

Plan: Eval($X₁.a$); Visit(0,1); Eval($X₂.a$); Visit(0,2);
 Eval($X₁.c$); Visit(1,1); Eval($X₂.c$); Visit(1,2);
 Eval(Z.m); Visit(0,0)
Ordered Attribute Grammars

• For each nonterminal X
 - Construct graph $DS(X) = <A(X), E>$ that over-approximates the transitive dependences that may arise among the attributes of X in some derivation tree
 - Defer how.
 - If $DS(X)$ is cyclic for any X give up.
OAG: step 1

- For each nonterminal X
 - Construct a graph $DS(X) = <A(X), E>$ that over-approximates the transitive dependences that may arise among the attributes of X in some derivation tree
 - Defer how.
 - If $DS(X)$ is cyclic for any X
give up.
OAG: step 2

- Attempt to compute a partition of $A(X)$ from $DS(X)$ without reference to the productions in which X occurs, as follows:
 - Topological sort $DS(X)$ minimizing alternations between $IA(X)$ and $SA(X)$.
 - Each switch from inherited to synthesized (or vice versa) is a boundary between classes of the partition.
- For example, from efg we get the partition $\{\{e\}\{g\}\{f\}\}$.
OAG: step 3

• Use the given method for finding a plan from the partitions. If this fails (because topological sort discovers a cycle), then fail.
OAG: step 1, cont.

- To compute DS(X) for all X
 - Simultaneously take transitive closures of the direct dependence graphs D_p for all p, and whenever an edge between two attributes of the same nonterminal occurrence is created, add it to every occurrence of X.
 - When finished, choose the attributes and edges of an arbitrary occurrence of each nonterminal X as DS(X)