Attribute Grammars

• An extension of CFGs to define “semantics” of sentences in language
• Knuth, 1968
• Intuition:
 - Decorate each parse-tree node with attributes, i.e., variables defined by equations in terms of constants and neighboring attributes in the tree
 - Evaluate the attributes like a spreadsheet evaluates cells defined by equations, i.e., order of evaluation determined automatically

Attributes

• Let G be a context-free grammar \(\langle V, \Sigma, S, \rightarrow \rangle \)
• Associate with every \(X \in (V \cup \Sigma) \) a set of attributes \(A(X) \)
• Notation. If \(a \in A(X) \), we denote it \(X.a \)
• Let \(A(X) \) be partitioned into disjoint sets
 - synthesized attributes, \(SA(X) \)
 - inherited attributes, \(IA(X) \)

Occurrences

• Let \(p \) be a production \(X_0 \rightarrow X_1...X_n \) of G
• Each \(X_i \) is a symbol occurrence of \(p \)
• Input(p) = \(IA(X_0) \oplus SA(X_1) \oplus ... \oplus SA(X_n) \)
• Output(p) = \(SA(X_0) \oplus IA(X_1) \oplus ... \oplus IA(X_n) \)
• Each attribute in Input(p) or Output(p) is an attribute occurrence of \(p \)

Input and Output Occurrences

Equations

• Let \(p \) be a production \(X_0 \rightarrow X_1...X_n \) of G
• An attribute equation of \(p \) defines \(a \in \text{Output}(p) \) in terms of attributes in \(\text{Input}(p) \oplus \text{Output}(p) \)
• An attribute grammar is well formed if
 - \(IA(S) = \emptyset \)
 - \(SA(a) = \emptyset \), for all \(a \in \Sigma \)
 - Every output attribute of every production has precisely 1 defining equation
• An attribute grammar is in normal form if only input attributes occur on RHS of equations
Example

• Productions
 \[S \rightarrow E \]
 \[E \rightarrow E + E \]
 \[E \rightarrow \text{NUM} \]
 \[E \rightarrow \text{ID} \]
 \[E \rightarrow \text{let}\ \text{ID} = E \ \text{in} \ E \]

• Sample sentence
 \[\text{let } x = 1 \ \text{in} \ \text{let } y = x + 1 \ \text{in} \ x + y \]

• Attributes
 Inherited: E.env
 Synthesized: S.value, E.value, NUM.value, ID.name

Example, cont.

\[S \rightarrow E \]
\[E\text{.env} = \text{EmptyEnvironment()} \]
\[S\text{.value} = E\text{.value} \]
\[E_0 \rightarrow E_1 + E_2 \]
\[E_1\text{.env} = E_0\text{.env} \]
\[E_2\text{.env} = E_0\text{.env} \]
\[E_0\text{.value} = E_1\text{.value} + E_2\text{.value} \]
\[E \rightarrow \text{NUM} \]
\[E\text{.value} = \text{NUM.value} \]
\[E \rightarrow \text{ID} \]
\[E\text{.value} = \text{Lookup(ID.name, E.env)} \]
\[E_0 \rightarrow \text{let}\ \text{ID} = E_1 \ \text{in} \ E_2 \]
\[E_1\text{.env} = E_0\text{.env} \]
\[E_2\text{.env} = \text{Insert(ID.name, E_1.value, E_0.env)} \]
\[E_0\text{.value} = E_2\text{.value} \]

Direct Dependency Graph

• Let \(p \) be a production \(X_0 \rightarrow X_1...X_n \) of \(G \)
• \(D_p \), the direct dependency graph of \(p \), is the directed graph \(\langle A(p), E(p) \rangle \), where
 - Nodes: \(A(p) = \text{Input}(p) \oplus \text{Output}(p) \)
 - Edges: \(E(p) = \{ (a_1, a_2) \mid a_2 \text{ depends on } a_1 \} \)
• An attribute grammar is locally acyclic if for every production \(p \), \(D_p \) is acyclic

Example, cont.

\[E_0 \rightarrow \text{let}\ \text{ID} = E_1 \ \text{in} \ E_2 \]
\[E_1\text{.env} = E_0\text{.env} \]
\[E_2\text{.env} = \text{Insert(ID.name, E_1.value, E_0.env)} \]
\[E_0\text{.value} = E_2\text{.value} \]

Dependency Graph

• Let \(T \) be a derivation tree for some \(x \in L(G) \)
 - Each subtree corresponding to production \(p \) is a production instance in \(T \)
 - Each symbol occurrence in \(p \) is a symbol instance in \(T \)
 - Each attribute occurrence in \(p \) is an attribute instance in \(T \)
 - Each edge in \(D_p \) is a dependence instance in \(T \)
• \(D(T) \), the dependency graph for \(T \), has
 - Nodes: the attribute instances of \(T \)
 - Edges: the dependence instances of \(T \)

Example, cont.

\[\text{let } x = 1 \ \text{in} \ x \]
Noncircularity

- An attribute grammar is **noncircular** if for every derivation tree, $T(D(T)$ is acyclic
- We are only interested in noncircular grammars

Evaluation

- Given a derivation tree T, evaluate the attribute instances of T in topological order w.r.t. $D(T)$
- **Dynamic evaluation**: Obtain the topological order using either
 - topological sort, or
 - depth first search backwards from nodes of out-degree 0
- **Static evaluation**: Analyze the grammar in advance and determine tree traversal schemes with interleaved evaluations such that for any possible derivation tree T, evaluations will be in topological order

Topological Sort

```plaintext
W := ∅;
for each node n with indegree(n)=0 do
  W := W ∪ {n};
while W ≠ ∅ do
  select n from W;
  remove n from W;
  for each successor n' of n do
    remove edge <n,n'>;
    if indegree(n')=0 then W := W ∪ {n'}
```

S-attributed

- An attribute grammar is S-attributed iff it only has synthesized attributes.
- Evaluation: Use end-order traversal of derivation tree (e.g., during a bottom-up parse) to obtain topological evaluation order
- Yacc, Bison, and Cup only support S-attributed grammars

L-attributed

- Defined so that can be evaluated in one left-to-right pass, (e.g., during a top-down parse)
- Every RHS inherited attribute depends only on
 - LHS inherited
 - any RHS attribute to the left
- Every LHS synthesized attribute depends only on
 - LHS inherited
 - any RHS

Alternating Pass Evaluation

- Alternate between L-attributed and R-attributed passes.
- In pass i, all attributes evaluated in previous passes are known values available for during the evaluations during pass i
- An attribute grammar is alternating pass if there exists k alternating passes sufficient to evaluate any derivation tree T
Efficient Use of Sequential Storage

- Reverse of left-to-right endorder is right-to-left preorder (and vice-versa) so can make efficient use of sequential storage medium

```
          a
         / \   
        b   e 
       / \    
      c   d   f  
      \     /   
        g
```

Endorder: c d b f g e a
Right-to-left preorder: a e g f b d c