CS412/413

Introduction to Compilers
Radu Rugina

Lecture 34: Memory Management
24 Apr 02

Outline

o Virtual memory
« Explicit memory management

* Garbage collection techniques
— Reference counting
— Mark and sweep
— Copying GC
— Concurrent/incremental GC
— Generational GC

Book: “Garbage Collection”, by R. Jones and R. Lins

CS 412/413 Spring 2002 Introduction to Compilers 2

Virtual Memory

Virtual memory Physical memory

(per process)

Explicitly
allocated ﬁ
(Unix: brk)

Heap 1

Static data | == Page table/
|

Explicit Memory Management

¢ Unix (libc) interface:

void* malloc(long n) : allocate n bytes of storage on
the heap and return its address

void free(void *addr) : release storage allocated by
malloc at address addr

o User-level library manages heap, issues brk calls when
necessary

CS 412/413 Spring 2002 Introduction to Compilers 4

TLB
Code |
Stﬁck
Grows
automatically i} Automatic Kernel
CS 412/413 Spring 2002 Introduction to Compilers 3
Freelists

¢ Blocks of unused memory stored in freelist(s)
malloc: find usable block on freelist
free: put block onto head of freelist

| b

|
[¢] [o 1 [T¢T1 heap
| =

Freelist pointer

* Simple, but fragmentation ruins the heap

« External fragmentation = small free blocks become
scattered in the heap

* Cannot allocate a large block even if the sum of all
free blocks is larger than the requested size

CS 412/413 Spring 2002 Introduction to Compilers 5

Buddy System

Idea 1: freelists for different allocation sizes
— malloc, free are O(1)

Idea 2: freelist sizes are powers of two: 2, 4, 8, 16, ...

— Blocks subdivided recursively: each has buddy

— Round requested block size to the nearest power of 2
— Allocate a free block if available

— Otherwise, (recursively) split a larger block and put all the
other blocks in the free list

Internal fragmentation: allocate larger blocks because of
rounding

* Trade external fragmentation for internal fragmentation

CS 412/413 Spring 2002 Introduction to Compilers 6

Explicit Garbage Collection

¢ Java, C, C++ have new operator / malloc call that
allocates new memory

« How do we get memory back when the object is not
needed any longer?

« Explicit garbage collection (C, C++)

— delete operator / free call destroys object, allows
reuse of its memory : programmer decides how to
collect garbage

— makes modular programming difficult—have to know

what code “owns” every object so that objects are
deleted exactly once

CS 412/413 Spring 2002 Introduction to Compilers 7

Automatic Garbage Collection

» The other alternative: automatically collect garbage!

o Usually most complex part of the run-time environment

« Want to delete objects automatically if they won't be used
again: undecidable

+ Conservative: delete only objects that definitely won't be
used again

* Reachability: objects definitely won't be used again if there is
no way to reach them from root references that are always
accessible (globals, stack, registers)

CS 412/413 Spring 2002 Introduction to Compilers 8

Object Graph

« Stack, registers are treated as the roots of the object graph.
Anything not reachable from roots is garbage

* How can non-reachable objects can be reclaimed efficiently?
Compiler can help

S B

CS 412/413 Spring 2002 Introduction to Compilers 9

Algorithm 1: Reference Counting

» Idea: associate a reference count with each allocated block
(reference count = the number of references (pointers)
pointing to the block)

* Keep track of reference counts

— For an assignment x = Expr, increment the reference
count of the new block x is pointing to

— Also decrement the reference count of the block x was
previously pointing to

« When number of incoming pointers is zero, object is
unreachable: garbage

CS 412/413 Spring 2002 Introduction to Compilers 10

Reference Counts

[e PO PO

¢ ... how about cycles?

CS 412/413 Spring 2002 Introduction to Compilers 11

Reference Counts

» Reference counting doesn't detect cycles!

CS 412/413 Spring 2002 Introduction to Compilers 12

Performance Problems

o Consider assignment x.f=y

o Without ref-counts: [tx+ off] = ty

* With ref-counts:
tl = [tx + f_off]; c = [t1 + refent]; c=c- 1; [t1 +
refcnt] = c; if (c == 0) goto L1 else goto L2; L1: call
release_Y_object(tl); L2: ¢ = [ty + refent]; c = ¢ + 1; [ty
+ refent] = ¢; [tx + f_off] = ty;

¢ Data-flow analysis can be used to avoid unnecessary
increments & decrements

o Large run-time overhead

* Result: reference counting not used much by real
language implementations

CS 412/413 Spring 2002 Introduction to Compilers 13

Algorithm 2: Mark and Sweep

« (lassic algorithm with two phases

e Phase 1: Mark all reachable objects

— start from roots and traverse graph forward marking
every object reached

¢ Phase 2: Sweep up the garbage

— Walk over all allocated objects and check for marks
— Unmarked objects are reclaimed

— Marked objects have their marks cleared

— Optional: compact all live objects in heap

CS 412/413 Spring 2002 Introduction to Compilers 14

Traversing the Object Graph

CS 412/413 Spring 2002 Introduction to Compilers 15

Implementing Mark Phase

o Mark and sweep generally implemented as depth-first

traversal of object graph

¢ Has natural recursive implementation
¢ What happens when we try to mark a long linked list

recursively?

[B S B

CS 412/413 Spring 2002 Introduction to Compilers 16

Pointer Reversal

» Idea: during DFS, each pointer only followed once. Can
reverse pointers after following them -- no stack
needed! (Deutsch-Waite-Schorr algorithm)

\ e e k] | | —

o Implication: objects are broken while being traversed;
all computation over objects must be halted during
mark phase (oops)

CS 412/413 Spring 2002 Introduction to Compilers 17

Cost of Mark and Sweep

Mark and sweep accesses all memory in use by program
— Mark phase reads only live (reachable) data
— Sweep phase reads the all of the data (live + garbage)

Hence, run time proportional to total amount of data!

Can pause program for long periods!

CS 412/413 Spring 2002 Introduction to Compilers 18

Conservative Mark and Sweep

Allocated storage contains both pointers and non-pointers;

integers may look like pointers

o Issues: precise versus conservative collection

Treating a pointer as a non-pointer: objects may be garbage-

collected even though they are still reachable and in use

(unsafe)

* Treating a non-pointer as a pointer: objects are not garbage
collected even though they are not pointed to (safe, but less
precise)

¢ Conservative collection: assumes things are pointers unless

they can't be; requires no language support (works for C!)

CS 412/413 Spring 2002 Introduction to Compilers 19

CS 412/413 Spring 2002

Algorithm 3: Copying Collection

Like mark & sweep: collects all garbage

Basic idea: use two memory heaps
— one heap in use by program
— other sits idle until GC requires it

GC mechanism:

— copy all live objects from active heap (from-space) to the
other (to-space)

— dead objects discarded during the copy process

— heaps then switch roles

Issue: must rewrite referencing relations between objects

Introduction to Compilers 20

Copying Collection (Cheney)

* Copy = move all root objects from from-space to to-space

* From space traversed breadth-first from roots, objects
encountered are copied to top of to-space.

from-space to-space

] > next
scan

roots —|
CS 412/413 Spring 2002 Introduction to Compilers 21

CS 412/413 Spring 2002

Benefits of Copying Collection

Once scan=next, all uncopied objects are garbage. Root
pointers (registers, stack) are swung to point into to-space,
making it active

Good:

— Simple, no stack space needed

— Run time proportional to # live objects

— Automatically eliminates fragmentation by compacting
memory

— malloc(n) implemented as (top = top + n)
Bad:

— Precise pointer information required

— Twice as much memory used

Introduction to Compilers 22

Incremental and Concurrent GC

¢ GC pauses avoided by doing GC incrementally; collector &
program run at same time

* Program only holds pointers to to-space

« On field fetch, if pointer to from-space, copy object and
fix pointer

* On swap, copy roots and fix stack/registers

to-space
next
scan
roots —|
CS 412/413 Spring 2002 Introduction to Compilers 23

CS 412/413 Spring 2002

Generational GC

Observation: if an object has been reachable for a long
time, it is likely to remain so

In long-running system, mark & sweep, copying
collection waste time, cache scanning/copying older
objects

Approach: assign heap objects to different generations
GOI Gll GZI'"

Generation G, contains newest objects, most likely to
become garbage (<10% live)

Introduction to Compilers 24

Generations

¢ Consider a two-generation system. G, = new objects,
G, = tenured objects

* New generation is scanned for garbage much more
often than tenured objects

* New objects eventually given tenure if they last long
enough

¢ Roots of garbage collection for collecting G, include all
objects in G; (as well as stack, registers)

CS 412/413 Spring 2002 Introduction to Compilers 25

Remembered Set

« How to avoid scanning all tenured objects?

In practice, few tenured objects will point to new objects;
unusual for an object to point to a newer object

* Can only happen if older object is modified long after
creation to point to new object

« Compiler inserts extra code on object field pointer writes to

catch modifications to older objects—older objects are
remembered set for scanning during GC, tiny fraction of G,

CS 412/413 Spring 2002 Introduction to Compilers 26

Summary

« Garbage collection is an aspect of the program
environment with implications for compilation

¢ Important language feature for writing modular code

e IC: Boehm/Demers/Weiser collector
http://www.hpl.hp.com/personal/Hans_Boehm/gc/
— conservative: no compiler support needed
— generational: avoids touching lots of memory
— incremental: avoids long pauses
— true concurrent (multi-processor) extension exist

CS 412/413 Spring 2002 Introduction to Compilers 27

