CS412/413

Introduction to Compilers
Radu Rugina

Lecture 22: Using Dataflow Analysis
15 Mar 02

Outline

* Apply dataflow framework to several analysis
problems:
— Live variable analysis
— Available expressions
— Reaching definitions
— Constant folding

* Also covered:

— Implementation issues
— Classification of dataflow analyses

CS 412/413 Spring 2002 Introduction to Compilers 2

Problem 1: Live Variables

« Compute live variables at each program point
* Live variable = variable whose value may be used later,
in some execution of the program

» Dataflow information: sets of live variables
* Example: variables {x,z} may be live at program point p
* Is a backward analysis
o LetV = set of all variables in the program
o Lattice (L, =), where:

— L = 2V (power set of V, i.e. set of all subsets of V)

— Partial order £ is set inclusion: 2

S,CS,iff $,25,

CS 412/413 Spring 2002 Introduction to Compilers

LV: The Lattice

* Consider set of variables V = {x,y,z}
Partial order: 2 0
e Set Vis finite implies |

lattice has finite height o {Y}\{z}

» Meet operator: U | |
(set union: out[B] is union X X.Z z
of in[B’], for all B'Osucc(B) iy A |, }/{y’ Y

* Top element: O {X,y,2}

(empty set) "
» Smaller sets of live variables = more precise analysis
* All variables may be live = least precise

CS 412/413 Spring 2002 Introduction to Compilers 4

LV: Dataflow Equations

* General dataflow equations (X, is information at the end of
exit basic block):

in[B] = Fg(out[B]), for all B
out[B] = I {in[B"] | B'Osucc(B)}, for all B
out[B.] =X,

* Replace meet with set union:
in[B] = Fg(out[B]), for all B
out[B] = U {in[B"] | B'Osucc(B)}, for all B
out[B.] =X,

* Meaning of union meet operator:

“A variable is live at the end of a basic block B if it is live at
the beginning of one of its successor blocks”

CS412/413 Spring 2002 Introduction to Compilers

LV: Transfer Functions

« Transfer functions for basic blocks are composition of transfer
functions of instructions in the block

» Define transfer functions for instructions

» General form of transfer functions:
Fi(X) = (X - def[I]) U use[I]
where:
deffI] = set of variables defined (written) by I
use[I] = set of variables used (read) by I

* Meaning of transfer functions:

“Variables live before instruction I include: 1) variables live
after I, not written by I, and 2) variables used by I”

CS 412/413 Spring 2002 Introduction to Compilers 6

LV: Transfer Functions

» Define def/use for each type of instruction

iflisx=yOPz: use[I] = {y, z} def[I] = {x}
iflisx=0Py : use[I] = {y} def[I] = {x}
iflisx=y : use[I] = {y} def[I] = {x}
iflisx=addry: use[I] = {} def[I] = {x}
if Tis if (x) : use[I] = {x} deffI] = {3
ifIisreturnx use[I] = {x} def[I] = {}
ifLis x = f(yy..., ¥p) : use[I] = {yy-..s Yo}
deffI] = {x}

o Transfer functions F,(X) = (X — def[I]) U use[I]

» For each F, def[I] and use[I] are constants: they don't
depend on input information X

CS 412/413 Spring 2002 Introduction to Compilers 7

LV: Monotonicity

o Are transfer functions: F,(X) = (X — def[I]) U use[I]
monotonic?

* Because def[I] is constant, X — def[I] is monotonic:
X1 2 X2 implies X1 — def[I] 2 X2 — def[I]

* Because use[I] is constant, Y U use[I] is monotonic:
Y1 2 Y2 implies Y1 U use[I] =2 Y2 U use[I]

» Put pieces together: F,(X) is monotonic
X1 2 X2 implies
(X1 — def[I]) U use[I] 2 (X2 - def[I]) U use[I]

CS 412/413 Spring 2002 Introduction to Compilers 8

LV: Distributivity

» Are transfer functions: Fi(X) = (X —deffI]) U use[I]
distributive?

* Since deffI] is constant: X — def[I] is distributive:
(X1 U X2) —def[I] = (X1—def[I]) U (X2 - def[I])
because: (@U b)-c=(@a-c) U (b-¢)

* Since use[I] is constant: Y U use[I] is distributive:
(YL U Y2) U use[l] = (Y1 U use[I]) U (Y2 U use[l])
because: (@U b) Uc=(@uUc)U (bUc)

» Put pieces together: F,(X) is distributive
Fi(X1 U X2) = F(X1) U F(X2)

CS 412/413 Spring 2002 Introduction to Compilers 9

Live Variables: Summary

« Lattice: (2Y, 2); has finite height

* Meet is set union, top is empty set

* Is a backward dataflow analysis

« Dataflow equations:
in[B] = Fg(out[B]), for all B
out[B] = U {in[B] | B'Osucc(B)}, for all B
out[B.] =X,

o Transfer functions: F,(X) = (X — def[I]) U use[I]
- are monotonic and distributive

» Iterative solving of dataflow equation:

- terminates
- computes MOP solution
CS 412/413 Spring 2002 Introduction to Compilers 10

Problem 2: Available Expressions

* Compute available expressions at each program point

» Available expression = expression evaluated in all program
executions, and its value would be the same if re-evaluated

« Is similar to available copies discussed earlier

« Dataflow information: sets of available expressions
* Example: expressions {x+y, y-z} are available at point p
* Is a forward analysis

* Let E = set of all expressions in the program
e Lattice (L, =), where:
— L = 28 (power set of E, i.e. set of all subsets of E)
- Partial order E is set inclusion: S
S,CS,iff S5,

CS 412/413 Spring 2002 Introduction to Compilers 11

AE: The Lattice

« Consider set of expressions = {x*z, x+y, y-z}
* Denote e = x*z, f=x+y, g=y-z

ef
« Partial order: < {efig}
* Set E is finite implies
lattice has finite height {efy {egr {fg}
» Meet operator: N | |
(set intersection) {e} {f} /{g}
» Top element: {e,f,g} |EI

(set of all expressions)

* Larger sets of available variables = more precise analysis
* No available expressions = least precise

CS 412/413 Spring 2002 Introduction to Compilers 12

AE: Dataflow Equations

* General forward dataflow equations (X, is information at
beginning of entry basic block):
out[I] = Fy(in[I]), for all B
in[B] = 1 {out[B] | B'Upred(B)}, for all B
in[B;] =X,

* Replace meet with set intersection:
out[I] = Fy(in[I]), for all B
in[B] = N {out[B'] | B'Upred(B)}, for all B
in[BJ =X,

* Meaning of intersection meet operator:

“An expression is available at entry of block B if it is available
at exit of all predecessor nodes”

CS 412/413 Spring 2002 Introduction to Compilers 13

AE: Transfer Functions

» Define transfer functions for instructions

» General form of transfer functions:
Fi(X) = (X=Kill[I]) U gen[I]
where:
kill[I] = expressions “killed” by 1
gen[I] = new expressions “generated” by I

Note: this kind of transfer function is typical for the majority
of the dataflow analyses!

» Meaning of transfer functions: “Expressions available after
instruction I include: 1) expressions available before I, not
killed by I, and 2) expressions generated by I”

CS 412/413 Spring 2002 Introduction to Compilers 14

AE: Transfer Functions

» Define kill/gen for each type of instruction
iflisx=yOPz: gen[I] ={yOPz} kill[I] = {E | xCE}
iflisx=0Py : gen[I] ={OP z} kill[I] = {E | xZE}

iflisx=y 1 gen[l] = {3 kill[I] = {E | xOE}
iflisx=addry: gen[l] ={} kill[I] = {E | xOE}
if Lis if (x) 1 gen[I] ={} kill[1] = {3
iflisreturnx : gen[I] = {} kill[1] = {3
ifLis x = f(yy,..., y,) : gen[I] = {3 kill[I] = {E | xZE}

» Transfer functions F(X) = (X = kill[I]) U gen[I]
» For each F;, kill[I] and gen[I] are constants: they don't
depend on input information X

CS 412/413 Spring 2002 Introduction to Compilers 15

AE: Monotonicity

* Are transfer functions: Fi(X) = (X = kill[I]) U gen[I]
monotonic?

* Because Kill[I] is constant, X — kill[I] is monotonic:
X1 S X2 implies X1 —kill[I] S X2 — kill[I]

* Because gen[I] is constant, Y U gen[I] is monotonic:
Y1 € Y2 implies Y1 U gen[I] € Y2 U gen[I]

» Put pieces together: F,(X) is monotonic
X1 € X2 implies
(X1 -Kkill[I]) U gen[I] S (X2-kill[I]) U gen[I]

CS 412/413 Spring 2002 Introduction to Compilers 16

AE: Distributivity

» Are transfer functions: F,(X) = (X - kill[I]) U gen[I]
distributive?

» Since kill[I] is constant: X — kill[I] is distributive:
(X1 N X2) —def[I] = (X1 -def[I]) N (X2 — def[I])
because: (@Nb)-c=(@-c)N(b-c)

* Since gen[I] is constant: Y U gen[I] is distributive:
(Y1 NY2)Ugen[I] = (YINgen[I]) U (Y2 N gen[I])
because: @Nb) Uc=(@Nc)U (bNc)

» Put pieces together: Fi(X) is distributive
F(X1 N X2) = F(X1) N F(X2)

CS 412/413 Spring 2002 Introduction to Compilers 17

Available Expressions: Summary

o Lattice: (2F, <); has finite height
* Meet is set intersection, top element is E
» Is a forward dataflow analysis

« Dataflow equations:
out[I] = Fg(in[I]), for all B
in[B] = N {out[B] | B'Upred(B)}, for all B
in[By] =X,

o Transfer functions: F,(X) = (X—Kill[I]) U gen[I]
- are monotonic and distributive

* Iterative solving of dataflow equation:
- terminates
- computes MOP solution

CS 412/413 Spring 2002 Introduction to Compilers 18

Problem 3: Reaching Definitions

Compute reaching definitions for each program point
Reaching definition = definition of a variable whose assigned
value may be observed at current program point in some
execution of the program

« Dataflow information: sets of reaching definitions
* Example: definitions {d2, d7} may reach program point p
* Is a forward analysis

* Let D = set of all definitions (assignments) in the program
e Lattice (D, =), where:
— L = 2P° (power set of D)
- Partial order E is set inclusion: 2
S,CS,iff 5,25,

CS 412/413 Spring 2002 Introduction to Compilers 19

RD: The Lattice

« Consider set of expressions = {d1, d2, d3}
where d1: x =y, d2: x=x+1, d3: z=y-x

 Partial order: 2 J
e Set D is finite implies |
lattice has finite height {d1} {d2} {d3}
» Meet operator: U | |
(set union) {d1,d2} {dlldwzld?’}
I
* Top el t: O
op elemen {d1,d2.d3}

(empty set)

« Smaller sets of reaching definitions = more precise analysis
* All definitions may reach current point = least precise

CS 412/413 Spring 2002 Introduction to Compilers 20

RD: Dataflow Equations

» General forward dataflow equations (X, is information at
beginning of entry basic block):
out[I] = Fg(in[I]), for all B
in[B] = I {out[B'] | B'Upred(B)}, for all B
in[B] =X,

» Replace meet with set union:
out[I] = Fg(in[I]), for all B
in[B] = U {out[B"] | B'Upred(B)}, for all B
in[B;] =X,

* Meaning of intersection meet operator:

“A definition reaches the entry of block B if it reaches the exit
of at least one of its predecessor nodes”

CS 412/413 Spring 2002 Introduction to Compilers 21

RD: Transfer Functions

» Define transfer functions for instructions

» General form of transfer functions:
Fi(X) = (X —kill[I]) U gen[I]
where:
kill[I] = definitions “killed” by I
gen[I] = definitions “generated” by 1
» Meaning of transfer functions: “"Reaching definitions after

instruction I include: 1) reaching definitions before I, not killed
by I, and 2) reaching definitions generated by 1"

CS 412/413 Spring 2002 Introduction to Compilers 22

RD: Transfer Functions

» Define kill/gen for each type of instruction
e IfIis a definition d:
gen[I] = {d} kill[I] = {d" | d" defines x}

o IfIis not a definition:
gen[I] = {} Kill[I] = {}

» Transfer functions F(X) = (X = kill[I]) U gen[I]
» For each F,, kill[I] and gen[I] are constants: they don't
depend on input information X

CS 412/413 Spring 2002 Introduction to Compilers 23

RD : Monotonicity

o Transfer function: F,(X) = (X - kill[I]) U gen[I]

* F,(X) is monotonic
X1 2 X2 implies
(X1 - kill[I]) U gen[I] = (X2 - kill[I]) U gen[I]

* F(X) is distributive
Fi(X1 U X2) = F(X1) U F(X2)

* Same reasoning as before

CS 412/413 Spring 2002 Introduction to Compilers 24

Reaching Definitions: Summary

Lattice: (2P, 2); has finite height

Meet is set union, top element is O

Is a forward dataflow analysis

Dataflow equations:
out[I] = Fg(in[I]), for all B
in[B] = U {out[B"] | B'Dpred(B)}, for all B
in[BJ =X,

Transfer functions: F(X) = (X —kill[I]) U gen[I]
- are monotonic and distributive

Iterative solving of dataflow equation:

- terminates
- computes MOP solution
CS 412/413 Spring 2002 Introduction to Compilers 25

Implementation

e Lattices in these analyses = power sets
Information in these analyses = subsets of a set
e How to implement subsets?

1. Set implementation
- Data structure with as many elements as the subset has
- Usually list implementation

2. Bitvectors:
- Use a bit for each element in the overall set
- Bit for element x is: 1 if x is in subset, 0 otherwise
- Example: S = {a,b,c}, use 3 bits
- Subset {a,c} is 101, subset {b} is 010, etc.

CS 412/413 Spring 2002 Introduction to Compilers 26

Implementation Tradeoffs

» Advantages of bitvectors:
— Efficient implementation of set union/intersection:
set union is bitwise “or” of bitvectors
set intersection is bitwise “and” of bitvectors
— Drawback: inefficient for subsets with few elements

= Advantage of list implementation:
- Efficient for sparse representation
— Drawback: inefficient for set union or intersection

* In general, bitvectors work well if the size of the (original)
set is linear in the program size

CS 412/413 Spring 2002 Introduction to Compilers 27

Problem 4: Constant Folding

Compute constant variables at each program point
Constant variable = variable having a constant value on all
program executions

» Dataflow information: sets of constant values
* Example: {x=2, y=3} at program point p
Is a forward analysis

Let V = set of all variables in the program, nvar = |V|
Let N = set of integer constants

Use a lattice over the set V x N

Construct the lattice starting from a lattice for N

Problem: (N, <) is not a complete lattice!
— ... because there is no LUB(N) and GLB(N)

CS 412/413 Spring 2002 Introduction to Compilers 28

Constant Folding Lattice

e Second try: lattice (NU{T,L}, <) T
— Where L <n, forall nON |

- And n<T, forall nON ,2

- Is complete! |1

0

» Meaning: A
— v=T: don't know if v is constant _'2

— v=1: vis not constant |

-

1

CS 412/413 Spring 2002 Introduction to Compilers 29

Constant Folding Lattice

e Second try: lattice (NU{T,L}, <) I
— Where L <n, forall nON
- And n<T, forall nON
— Is complete!

— Is incorrect for constant folding
— Meet of two constants c#d is min(c,d)

|
2
|
1
|
e Problem: (.]
-1
|
-2
— Meet of different constants should be L !

= Another problem: has infinite height ... 1

CS 412/413 Spring 2002 Introduction to Compilers 30

Constant Folding Lattice
» Solution: flat lattice L = (NU{T, L}, =)
— Where L = n, forall nON

— And nC T, forall nON
— And distinct integer constants are not comparable

T

I\
0 1 2

2 -1

~\ I
1

» Note: meet of any two distinct numbers is L!

CS 412/413 Spring 2002 Introduction to Compilers 31

Constant Folding Lattice
e Denote N*=Nu{T,L}
o Use flat lattice L=(N*, =)

* Constant folding lattice: L'=(V - N*, =)
e Where partial order on V - N* is defined as:
X Ec Y iff for each variable v: X(v) E Y(v)

* Can represent a function in V - N* as a set of
assignments: { {vi=cl}, {v2=c2}, ..., {vh=cn} }

CS 412/413 Spring 2002 Introduction to Compilers 32

CF: Transfer Functions

Transfer function for instruction I:

Fi(X) = (X=Kill[I]) U gen[I]
where:

kill[I] = constants “killed” by I

gen[I] = constants “generated” by I
e X[v] =c ON*if {v=c} OX

If Iis v = ¢ (constant): gen[I] = {v=c} Kill[I] = {v} x N*

IfTisv = u+w: gen[I] = {v=e} Kill[I] = {v} x N*

where e = X[u] + X[w], if X[u] and X[w] are not T,L
e=1,ifX[ul=LorXw]=L1
e=T,ifX[ul=TandX[w] =T

CS 412/413 Spring 2002 Introduction to Compilers 33

CF: Transfer Functions
* Transfer function for instruction I:
Fi(X) = (X=Kill[I]) U gen[I]
* Here gen[I] is not constant, it depends on X
« However transfer functions are monotonic (easy to prove)

= .. but are transfer functions distributive?

CS 412/413 Spring 2002 Introduction to Compilers 34

CF: Distributivity

* Example:

3
2

{x=2,y=3,z=T} - - {x=3,y=2,z=T}

H - {X=?Iy=?lz= ?}
——{x=?,y=?,z=7?}

* At join point, apply meet operator
» Then use transfer function for z=x+y

CS 412/413 Spring 2002 Introduction to Compilers 35

CF: Distributivity

* Example:

2 x=3

3 y=2|_ {x=3,y=2,z=T}
H- —{X=Ly=1,2=T}
ZEXHY o {x=Ly=L,2=1}

» Dataflow result (MFP) at the end: {x=_L,y=1,z=1}
* MOP solution at the end: {x=_1,y=1,z=5} !

X
{x=2,y=3,z=T}-lY

CS 412/413 Spring 2002 Introduction to Compilers 36

CF: Distributivity

* Example:

=3
=2

X
{x=2,y=3,z=T}-l¥

X
Y22l {x=3y=2,2=T}
H-Z - —{X=Ly=1,2=T}
=Y tx=Ly=1,2=1}
» Reason for MOP # MFP:
transfer function F of z=x+y is not distributive!
F(X1 1 X2) # F(X1) 1 F(X2)
where X1 = {x=2,y=3,z=T} and X2 = {x=3,y=2,z=T}

CS 412/413 Spring 2002 Introduction to Compilers 37

Classification of Analyses

» Forward analyses: information flows from
— CFG entry block to CFG exit block
- Input of each block to its output
— Output of each block to input of its successor blocks

— Examples: available expressions, reaching definitions,
constant folding

» Backward analyses: information flows from
— CFG exit block to entry block
— OQutput of each block to its input
— Input of each block to output of its predecessor blocks
— Example: live variable analysis

CS 412/413 Spring 2002 Introduction to Compilers 38

Another Classification

e “"may” analyses:

- information describes a property that MAY hold in SOME
executions of the program

— Usually: M=y, T=0
— Hence, initialize info to empty sets
— Examples: live variable analysis, reaching definitions

* "must” analyses:

— information describes a property that MUST hold in ALL
executions of the program

— Usually:r=nN, T=S
- Hence, initialize info to the whole set
— Examples: available expressions

CS 412/413 Spring 2002 Introduction to Compilers 39

