CS412/413

Introduction to Compilers Radu Rugina

Lecture 22: Using Dataflow Analysis 15 Mar 02

Outline

- Apply dataflow framework to several analysis problems:
 - Live variable analysis
 - Available expressions
 - Reaching definitions
 - Constant folding
- Also covered:
 - Implementation issues
 - Classification of dataflow analyses

CS 412/413 Spring 2002

Introduction to Compilers

Problem 1: Live Variables

- Compute live variables at each program point
- Live variable = variable whose value may be used later, in some execution of the program
- · Dataflow information: sets of live variables
- Example: variables {x,z} may be live at program point p
- Is a backward analysis
- Let V = set of all variables in the program
- Lattice (L, ⊆), where:
 - L = 2V (power set of V, i.e. set of all subsets of V)
 - Partial order \sqsubseteq is set inclusion: \supseteq

 $S_1 \sqsubseteq S_2 \text{ iff } S_1 \supseteq S_2$

CS 412/413 Spring 2002

Introduction to Compilers

LV: The Lattice

- Consider set of variables V = {x,y,z}
- Partial order: ⊇
- Set V is finite implies lattice has finite height
- Meet operator: ∪
 (set union: out[B] is union
 of in[B'], for all B'∈succ(B)
- Top element: Ø (empty set)
- {x,y} {y} {x,z} {y} {x,y,z}

Ø

- Smaller sets of live variables = more precise analysis
- All variables may be live = least precise

CS 412/413 Spring 2002

Introduction to Compilers

LV: Dataflow Equations

- General dataflow equations (\boldsymbol{X}_0 is information at the end of exit basic block):

$$\begin{split} &\text{in}[B] = F_B \overleftarrow{\text{out}[B]}, \text{ for all } B \\ &\text{out}[B] = \sqcap \ \{\text{in}[B'] \mid B' \in \text{succ}(B)\}, \text{ for all } B \\ &\text{out}[B_e] \ = X_0 \end{split}$$

• Replace meet with set union:

$$\begin{split} & \text{in}[B] = F_B(\text{out}[B]), \text{ for all } B \\ & \text{out}[B] = \cup \text{ {in}[B']} \mid B' \in \text{succ}(B) \}, \text{ for all } B \\ & \text{out}[B_e] & = X_0 \end{split}$$

- Meaning of union meet operator:
 - "A variable is live at the end of a basic block B if it is live at the beginning of one of its successor blocks"

CS 412/413 Spring 2002

Introduction to Compilers

LV: Transfer Functions

- Transfer functions for basic blocks are composition of transfer functions of instructions in the block
- · Define transfer functions for instructions
- General form of transfer functions:

 $F_{I}(X) = (X - def[I]) \cup use[I]$ where:

def[I] = set of variables defined (written) by I use[I] = set of variables used (read) by I

• Meaning of transfer functions:

"Variables live before instruction I include: 1) variables live after I, not written by I, and 2) variables used by I"

CS 412/413 Spring 2002

Introduction to Compilers

LV: Transfer Functions

• Define def/use for each type of instruction

```
if I is x = v OP z:
                              use[I] = \{y, z\}
                                                       def[I] = \{x\}
if I is x = OP y:
                              use[I] = \{y\}
                                                       def[I] = \{x\}
if I is x = y
                              use[I] = \{y\}
                                                       def[I] = \{x\}
if I is x = addr y:
                              use[I] = \{\}
                                                       def[I] = \{x\}
if I is if (x)
                              use[I] = \{x\}
                                                       def[I] = \{\}
if I is return x :
                              use[I] = \{x\}
                                                       def[I] = \{\}
if I is x = f(y_1, ..., y_n):
                              use[I] = \{y_1, ..., y_n\}
                              def[I] = \{x\}
```

- Transfer functions $F_I(X) = (X def[I]) \cup use[I]$
- For each F, def[I] and use[I] are constants: they don't depend on input information X

CS 412/413 Spring 2002

Introduction to Compilers

LV: Monotonicity

- Are transfer functions: F_I(X) = (X − def[I]) ∪ use[I]
- Because def[I] is constant, X def[I] is monotonic: $X1 \supseteq X2$ implies $X1 - def[I] \supseteq X2 - def[I]$
- Because use[I] is constant, Y ∪ use[I] is monotonic: $Y1 \supseteq Y2 \text{ implies } Y1 \cup use[I] \supseteq Y2 \cup use[I]$
- Put pieces together: F₁(X) is monotonic

X1 ⊇ X2 implies

 $(X1 - \mathsf{def}[I]) \cup \mathsf{use}[I] \supseteq (X2 - \mathsf{def}[I]) \cup \mathsf{use}[I]$

CS 412/413 Spring 2002

Introduction to Compilers

LV: Distributivity

- Are transfer functions: $F_I(X) = (X def[I]) \cup use[I]$
- Since def[I] is constant: X def[I] is distributive: $(X1 \cup X2) - def[I] = (X1 - def[I]) \cup (X2 - def[I])$ because: $(a \cup b) - c = (a - c) \cup (b - c)$
- Since use[I] is constant: Y \cup use[I] is distributive: $(Y1 \cup Y2) \cup use[I] = (Y1 \cup use[I]) \cup (Y2 \cup use[I])$ because: $(a \cup b) \cup c = (a \cup c) \cup (b \cup c)$
- Put pieces together: F₁(X) is distributive $F_{\tau}(X1 \cup X2) = F_{\tau}(X1) \cup F_{\tau}(X2)$

CS 412/413 Spring 2002

Introduction to Compilers

Live Variables: Summary

- Lattice: $(2^{V}, \supseteq)$; has finite height
- · Meet is set union, top is empty set
- Is a backward dataflow analysis
- · Dataflow equations:

 $in[B] = F_B(out[B])$, for all B $out[B] = \bigcup \{in[B'] \mid B' \in succ(B)\}, for all B$ $out[B_o] = X_0$

- Transfer functions: $F_I(X) = (X def[I]) \cup use[I]$
 - are monotonic and distributive
- · Iterative solving of dataflow equation:
 - terminates
 - computes MOP solution

CS 412/413 Spring 2002

Introduction to Compilers

10

{f,g}

{g}

Problem 2: Available Expressions

- Compute available expressions at each program point
- Available expression = expression evaluated in all program executions, and its value would be the same if re-evaluated
- · Is similar to available copies discussed earlier
- · Dataflow information: sets of available expressions
- Example: expressions {x+y, y-z} are available at point p
- Is a forward analysis
- Let E = set of all expressions in the program
- Lattice (L, ⊆), where:
 - L = 2^E (power set of E, i.e. set of all subsets of E)

11

- Partial order \sqsubseteq is set inclusion: ⊆

$$S_1 \sqsubseteq S_2 \text{ iff } S_1 \subseteq S_2$$

CS 412/413 Spring 2002 Introduction to Compilers

AE: The Lattice

- Consider set of expressions = {x*z, x+y, y-z}
- Denote e = x*z, f=x+y, q=y-z
- Set E is finite implies lattice has finite height
- Meet operator: ∩ (set intersection)
- Top element: {e,f,g}
- 0 (set of all expressions)

{e.f

{e}

- Larger sets of available variables = more precise analysis
- No available expressions = least precise

CS 412/413 Spring 2002

Introduction to Compilers 12

 $\{e,f,g\}$

{e,g}

AE: Dataflow Equations

 General forward dataflow equations (X_0 is information at beginning of entry basic block):

```
\begin{split} & \text{out}[I] = F_B(\text{in}[I])\text{, for all } B \\ & \text{in}[B] = \bigcap \; \{\text{out}[B'] \mid B' \in \text{pred}(B)\}\text{, for all } B \\ & \text{in}[B_s] \; = X_0 \end{split}
```

• Replace meet with set intersection:

```
\begin{split} & \text{out}[I] = F_B(\text{in}[I]), \, \text{for all } B \\ & \text{in}[B] = \cap \, \{\text{out}[B'] \mid B' \in \text{pred}(B)\}, \, \text{for all } B \\ & \text{in}[B_s] = X_0 \end{split}
```

• Meaning of intersection meet operator:

"An expression is available at entry of block B if it is available at exit of all predecessor nodes"

CS 412/413 Spring 2002

Introduction to Compilers

13

15

17

AE: Transfer Functions

- Define transfer functions for instructions
- · General form of transfer functions:

```
\begin{aligned} &F_{I}(X) = (\ X - kill[I]\ ) \ \cup \ gen[I] \\ &where: \\ &kill[I] = expressions \ ``killed'' \ by \ I \end{aligned}
```

- $gen[I] = new \ expressions ``generated'' \ by \ I$ Note: this kind of transfer function is typical for the majority
- Meaning of transfer functions: "Expressions available after instruction I include: 1) expressions available before I, not killed by I, and 2) expressions generated by I"

CS 412/413 Spring 2002

of the dataflow analyses!

Introduction to Compilers

AE: Transfer Functions

• Define kill/gen for each type of instruction

```
\begin{array}{lll} \text{if I is } x = y \text{ OP } z : & \text{gen}[I] = \{y \text{ OP } z\} & \text{kill}[I] = \{E \mid x \in E\} \\ \text{if I is } x = \text{ OP } y : & \text{gen}[I] = \{OP z\} & \text{kill}[I] = \{E \mid x \in E\} \\ \text{if I is } x = y : & \text{gen}[I] = \{\} & \text{kill}[I] = \{E \mid x \in E\} \\ \text{if I is } x = \text{addr } y : & \text{gen}[I] = \{\} & \text{kill}[I] = \{E \mid x \in E\} \\ \text{if I is if } (x) : & \text{gen}[I] = \{\} & \text{kill}[I] = \{\} \\ \text{if I is return } x : & \text{gen}[I] = \{\} & \text{kill}[I] = \{\} \\ \text{if I is } x = f(y_1, \dots, y_n) : & \text{gen}[I] = \{\} & \text{kill}[I] = \{E \mid x \in E\} \\ \end{array}
```

- Transfer functions $F_I(X) = (X kill[I]) \cup gen[I]$
- For each F_I, kill[I] and gen[I] are constants: they don't depend on input information X

CS 412/413 Spring 2002

Introduction to Compilers

AE: Monotonicity

- Are transfer functions: F₁(X) = (X kill[I]) ∪ gen[I] monotonic?
- Because kill[I] is constant, X kill[I] is monotonic:
 X1 ⊆ X2 implies X1 kill[I] ⊆ X2 kill[I]
- Because gen[I] is constant, $Y \cup gen[I]$ is monotonic: $Y1 \subseteq Y2 \text{ implies } Y1 \cup gen[I] \subseteq Y2 \cup gen[I]$
- Put pieces together: F₁(X) is monotonic

 $X1 \subseteq X2$ implies $(X1 - kill[I]) \cup gen[I] \subseteq (X2 - kill[I]) \cup gen[I]$

CS 412/413 Spring 2002

Introduction to Compilers

16

18

AE: Distributivity

- Are transfer functions: $F_I(X) = (X kill[I]) \cup gen[I]$ distributive?
- Since kill[I] is constant: X kill[I] is distributive:
 (X1 ∩ X2) def[I] = (X1 def[I]) ∩ (X2 def[I])
 because: (a ∩ b) c = (a c) ∩ (b c)
- Since gen[I] is constant: Y ∪ gen[I] is distributive:
 (Y1 ∩ Y2) ∪ gen[I] = (Y1 ∩ gen[I]) ∪ (Y2 ∩ gen[I])
 because: (a ∩ b) ∪ c = (a ∩ c) ∪ (b ∩ c)
- Put pieces together: $F_1(X)$ is distributive $F_1(X1 \cap X2) = F_1(X1) \cap F_1(X2)$

CS 412/413 Spring 2002

Introduction to Compilers

Available Expressions: Summary

- Lattice: (2^E, ⊆); has finite height
- Meet is set intersection, top element is E
- Is a forward dataflow analysis
- Dataflow equations:

```
\begin{split} & \text{out}[I] = F_B(\text{in}[I]), \, \text{for all B} \\ & \text{in}[B] = \bigcap \left\{ \text{out}[B'] \mid B' \in \text{pred}(B) \right\}, \, \text{for all B} \\ & \text{in}[B_s] = X_0 \end{split}
```

- Transfer functions: $F_I(X) = (X kill[I]) \cup gen[I]$
 - are monotonic and distributive
- · Iterative solving of dataflow equation:
 - terminates -
- computes MOP solution

CS 412/413 Spring 2002

Introduction to Compilers

Problem 3: Reaching Definitions

- Compute reaching definitions for each program point
- Reaching definition = definition of a variable whose assigned value may be observed at current program point in some execution of the program
- Dataflow information: sets of reaching definitions
- Example: definitions {d2, d7} may reach program point p
- Is a forward analysis
- Let D = set of all definitions (assignments) in the program
- Lattice (D, ⊆), where:
 - $-L = 2^{D}$ (power set of D)
 - Partial order \sqsubseteq is set inclusion: \supseteq

$$S_1 \sqsubseteq S_2 \text{ iff } S_1 \supseteq S_2$$

CS 412/413 Spring 2002

Introduction to Compilers

19

RD: The Lattice

- Consider set of expressions = $\{d1, d2, d3\}$ where d1: x = y, d2: x=x+1, d3: z=y-x
- Partial order: ⊇
- Set D is finite implies lattice has finite height
- Meet operator: ∪ (set union)
- Top element: \emptyset (empty set)
- {d1} (d3) {d1,d2} {d1,d3} {d2,d3}
- {d1,d2,d3}
- · Smaller sets of reaching definitions = more precise analysis
- All definitions may reach current point = least precise

CS 412/413 Spring 2002

Introduction to Compilers

20

RD: Dataflow Equations

General forward dataflow equations (\mathbf{X}_0 is information at beginning of entry basic block):

 $out[I] = F_B(in[I])$, for all B $in[B] = \prod \{out[B'] \mid B' \in pred(B)\}, for all B$ $in[B_s] = X_0$

· Replace meet with set union:

 $out[I] = F_B(in[I]), for all B$ $in[B] = \bigcup \{out[B'] \mid B' \in pred(B)\}, for all B$ $in[B_s] = X_0$

· Meaning of intersection meet operator:

A definition reaches the entry of block B if it reaches the exit of at least one of its predecessor nodes

CS 412/413 Spring 2002

Introduction to Compilers

RD: Transfer Functions

- · Define transfer functions for instructions
- · General form of transfer functions:

 $F_{\tau}(X) = (X - kill[I]) \cup gen[I]$

where:

kill[I] = definitions "killed" by Igen[I] = definitions "generated" by I

• Meaning of transfer functions: "Reaching definitions after instruction I include: 1) reaching definitions before I, not killed by I, and 2) reaching definitions generated by I"

CS 412/413 Spring 2002

Introduction to Compilers

RD: Transfer Functions

- Define kill/gen for each type of instruction
- If I is a definition d:

 $gen[I] = \{d\}$

 $kill[I] = \{d' \mid d' \text{ defines } x\}$

23

• If I is not a definition:

 $gen[I] = \{\}$

 $\mathsf{kill}[\mathtt{I}] = \{\}$

- Transfer functions $F_I(X) = (X kill[I]) \cup gen[I]$
- For each F_I, kill[I] and gen[I] are constants: they don't depend on input information X

CS 412/413 Spring 2002

Introduction to Compilers

RD: Monotonicity

- Transfer function: $F_i(X) = (X kill[I]) \cup gen[I]$
- F_I(X) is monotonic

 $X1 \supseteq X2$ implies

 $(X1-kill[I]) \cup gen[I] \supseteq (X2-kill[I]) \cup gen[I]$

• F₁(X) is distributive

 $F_I(X1 \cup X2) = F_I(X1) \cup F_I(X2)$

· Same reasoning as before

CS 412/413 Spring 2002

Introduction to Compilers

Reaching Definitions: Summary

- Lattice: (2^D, ⊇); has finite height
- Meet is set union, top element is Ø
- Is a forward dataflow analysis
- Dataflow equations:

```
\begin{split} & \text{out}[I] = F_B(\text{in}[I])\text{, for all } B \\ & \text{in}[B] = \cup \; \{\text{out}[B'] \mid B' \in \text{pred}(B)\}\text{, for all } B \\ & \text{in}[B_s] = X_0 \end{split}
```

- Transfer functions: $F_I(X) = (X kill[I]) \cup gen[I]$
 - are monotonic and distributive
- · Iterative solving of dataflow equation:
 - terminates
 - computes MOP solution

CS 412/413 Spring 2002

Introduction to Compilers

Implementation

- Lattices in these analyses = power sets
- Information in these analyses = subsets of a set
- · How to implement subsets?

1. Set implementation

- Data structure with as many elements as the subset has
- Usually list implementation

2. Bitvectors:

- Use a bit for each element in the overall set
- Bit for element x is: 1 if x is in subset, 0 otherwise
- Example: $S = \{a,b,c\}$, use 3 bits
- Subset {a,c} is 101, subset {b} is 010, etc.

CS 412/413 Spring 2002

Introduction to Compilers

n to Compilers 2

Implementation Tradeoffs

- · Advantages of bitvectors:
 - Efficient implementation of set union/intersection: set union is bitwise "or" of bitvectors set intersection is bitwise "and" of bitvectors
 - Drawback: inefficient for subsets with few elements
- Advantage of list implementation:
 - Efficient for sparse representation
 - Drawback: inefficient for set union or intersection
- In general, bitvectors work well if the size of the (original) set is linear in the program size

CS 412/413 Spring 2002

Introduction to Compilers

27

25

Problem 4: Constant Folding

- · Compute constant variables at each program point
- Constant variable = variable having a constant value on all program executions
- Dataflow information: sets of constant values
- Example: {x=2, y=3} at program point p
- · Is a forward analysis
- Let V = set of all variables in the program, nvar = |V|
- Let N = set of integer constants
- Use a lattice over the set V x N
- Construct the lattice starting from a lattice for N
- Problem: (N, ≤) is not a complete lattice!
 - ... because there is no LUB(N) and GLB(N)

CS 412/413 Spring 2002

Introduction to Compilers

28

Constant Folding Lattice

- Second try: lattice $(N \cup \{\top, \bot\}, \le)$
 - Where $\bot \le n$, for all $n \in \mathbb{N}$
 - And n≤T, for all n∈N
 - Is complete!
- Meaning:
 - $v = \top$: don't know if v is constant
 - $v=\bot$: v is not constant

0 -1 -2 - ... |

CS 412/413 Spring 2002

Introduction to Compilers

Constant Folding Lattice

- Second try: lattice $(N \cup \{\top, \bot\}, \le)$
 - Where $\bot \le n$, for all n ∈ N
 - And $n \le T$, for all $n \in N$
 - Is complete!
- Problem:
 - Is incorrect for constant folding
 - Meet of two constants c≠d is min(c,d)
 - Meet of different constants should be $\boldsymbol{\bot}$
- Another problem: has infinite height ...

CS 412/413 Spring 2002

Introduction to Compilers

Constant Folding Lattice

- Solution: flat lattice $L = (N \cup \{\top, \bot\}, \sqsubseteq)$
 - Where $\bot \sqsubseteq n$, for all $n \in N$
 - And $n \sqsubseteq \top$, for all $n \in \mathbb{N}$
 - And distinct integer constants are not comparable

• Note: meet of any two distinct numbers is ⊥!

CS 412/413 Spring 2002

Introduction to Compilers

31

33

35

Constant Folding Lattice

- Denote N*=N∪{⊤,⊥}
- Use flat lattice L=(N*, ⊑)
- Constant folding lattice: L'=(V → N*, ⊑_C)
- Where partial order on $V \to N^*$ is defined as: $X \sqsubseteq_C Y \ \text{iff for each variable } v\colon X(v) \sqsubseteq Y(v)$
- Can represent a function in V \rightarrow N* as a set of assignments: { {v1=c1}, {v2=c2}, ..., {vn=cn} }

CS 412/413 Spring 2002

Introduction to Compilers

CF: Transfer Functions

• Transfer function for instruction I:

 $F_{I}(X) = (|X - kill[I]|) \cup gen[I]$

where:

kill[I] = constants "killed" by I
gen[I] = constants "generated" by I

- X[v] = c ∈ N* if {v=c} ∈ X
- If I is v = c (constant): $gen[I] = \{v=c\}$ kill $[I] = \{v\} \times N^*$
- If I is v = u+w: gen[I] = {v=e} kill[I] = {v} x N*

where e = X[u] + X[w], if X[u] and X[w] are not \top, \bot

 $e = \bot$, if $X[u] = \bot$ or $X[w] = \bot$ $e = \top$, if $X[u] = \top$ and $X[w] = \top$

CS 412/413 Spring 2002

Introduction to Compilers

CF: Transfer Functions

• Transfer function for instruction I:

 $F_{\tau}(X) = (X - kill[I]) \cup gen[I]$

- Here gen[I] is not constant, it depends on X
- However transfer functions are monotonic (easy to prove)
- ... but are transfer functions distributive?

CS 412/413 Spring 2002

Introduction to Compilers

CF: Distributivity

• Example:

$$\begin{cases} x = 2, y = 3, z = \top \end{cases} - \begin{cases} x = 2 \\ y = 3 \end{cases} = \begin{cases} x = 3 \\ y = 2 \end{cases} - \begin{cases} x = 3, y = 2, z = \top \end{cases}$$

$$z = x + y = \begin{cases} x = 3, y = 2, z = \top \end{cases}$$

- At join point, apply meet operator
- Then use transfer function for z=x+y

CS 412/413 Spring 2002

Introduction to Compilers

CF: Distributivity

• Example:

$$\{x = 2, y = 3, z = T\} - \begin{bmatrix} x = 2 \\ y = 3 \end{bmatrix} - \begin{bmatrix} x = 3 \\ y = 2 \end{bmatrix} - \{x = 3, y = 2, z = T\}$$

$$z = x + y - - - \{x = 1, y = 1, z = 1\}$$

- Dataflow result (MFP) at the end: {X=⊥,y=⊥,z=⊥}
- MOP solution at the end: {x=⊥,y=⊥,z=5}!

CS 412/413 Spring 2002

Introduction to Compilers

36

CF: Distributivity

· Example:

Reason for MOP ≠ MFP:

transfer function F of z=x+y is not distributive!

$$F(X1\ \sqcap\ X2) \neq F(X1)\ \sqcap\ F(X2)$$

where
$$X1 = \{x=2, y=3, z=\top\}$$
 and $X2 = \{x=3, y=2, z=\top\}$

CS 412/413 Spring 2002

Introduction to Compilers

37

Classification of Analyses

- Forward analyses: information flows from
 - CFG entry block to CFG exit block
 - Input of each block to its output
 - Output of each block to input of its successor blocks
 Examples: available expressions, reaching definitions,
 - constant folding
- Backward analyses: information flows from
 - CFG exit block to entry block
 - Output of each block to its input
 - Input of each block to output of its predecessor blocks
 - Example: live variable analysis

CS 412/413 Spring 2002

Introduction to Compilers

38

Another Classification

- "may" analyses:
 - information describes a property that MAY hold in SOME executions of the program
 - Usually: \sqcap = \cup , \top = \emptyset
 - Hence, initialize info to empty sets
 - Examples: live variable analysis, reaching definitions
- "must" analyses:
 - information describes a property that MUST hold in ALL executions of the program
 - Usually: \sqcap = \cap , \top =S
 - Hence, initialize info to the whole set
 - Examples: available expressions

CS 412/413 Spring 2002

Introduction to Compilers