Live Variable Analysis
CS412/413
What are the live
variables at each
Introduction to Compilers program point?
Radu Rugina Method:
1. Define sets of
live variables
1. Build constraints
Lecture 20: Dataflow Analysis Frameworks 2. Solve constraints
11 Mar 02
CS 412/413 Spring 2002 Introduction to Compilers
Derive Constraints Derive Constraints
Constraints for each tl L=Lu{} tl
i ion: 2 L=Luly, 2
netruct t: L= L) U E
in[I]=(out[I]-def[I]) o L= LyDu iz L
L= d
U use[I] L, LZ = tjt{Lg } L
L . L
Constraints for L :; EI;S LOIRVES L
control flow: I:, L= Loa I:,
. Lo=Ls
= L L.
OB, S ™ o L= LD U 0 o
CS 412/413 Spring 2002 Introduction to Compilers 3 CS 412/413 Spring 2002 Introduction to Compilers
Initialization Iteration 1
L= - L={xy,z,c,d}
L=Lu{c} 1 L=Lu{c}
L: =L ULy, L,={} L: =L ULy, L, ={xy,z,d}
L= Lt L=0 L= Lt ks fiy'z'}d}
L= (Ls{yhu {2} ::‘;g L= (Ls{ynv{z} ::4;{5,2 '
Ls= Lgu {d} - Ly= Lo {d} s=0res
L: =Lul ::s :8 L: =Lul ::s ;g’g
L= (LX) U v,z L: -0 L= (LX) U v,z L: -0
Lg= Ly - L=L -
ly= L) o ly= L) oo
Lo=L; Lm _{} Lo=L; Lm o3
- =X,
L= L2V £ z=x Laegy L= L2 U £ z=x e}
CS 412/413 Spring 2002 Introduction to Compilers 5 CS 412/413 Spring 2002 Introduction to Compilers

Iteration 2

Ly={x,y,z,c,d}
L, ={x,y,z,c,d}
Ly ={y,z,c,d}
Ly ={x,z,c,d}
Ls ={x,y,z,c,d}

L=LU{3
L=LuUly

L= Lo U i)
L= (L) u {2

S Le=fuy2c.d)
monh Ly =y2,c.9)
L= (Leb) U vz} L =Gy
L=l SYiCS
_ Lo ={xy.c,d}
I: __LEO @ Lig={xy.,z,c,d}
v Ly ={x}
Ly = (L2 v {x} L, =0
CS 412/413 Spring 2002 Introduction to Compilers 7

Fixed-point!

L,={x,y,z,c,d}
L, ={x,y,z,c,d}
Ly ={y,z,c,d}
Ly ={x,z,c,d}
Ls ={x,y,z,c,d}

L=LU{3
L=LuUly

L= Lo U i)
L= (LoD u {3

S L ={uyzcd)
e L ={y2c.d)
L= (L) U dv2d L ={yod)
=L SYCS
_ Ly =0xy,cd)
I: __LEO @ Lo ={xy.,z,c,d}
v Ly ={x}
L= (L2 v {x} Lp={}
CS 412/413 Spring 2002 Introduction to Compilers 8

Final Result

Li={xy.,z,c,d}
L, ={xy.z,c,d}
Ly={y.zcd}
Ly={xz,cd}
Ls ={x,y,z,c,d}
Le ={x,y,z,c,d}
L, ={yz,c,d}
Lg ={x,y,c,d}
Ly ={xy,cd}
Ly ={xy,z,c,d}
Z=X Ly ={x}

Ly ={}

x live here !

Final result: sets
of live variables at
each program point

CS 412/413 Spring 2002 Introduction to Compilers 9

Characterize All Executions

L={x,y,zcd}
L, ={x,y,z,c,d}
Ly ={y.z,c,d}
L, ={x,z,c,d}
Ls ={x,y,z,c,d}
Ls ={x,y,z,c,d}
L, ={y,z,c,d}
Lg ={x,y,c,d}
Ly ={xy,c,d}
Lo ={x,y,z,c,d}
Ly ={x}

Ly ={}

The analysis detects
that there is an
execution which uses
the value x = y+1

CS 412/413 Spring 2002 Introduction to Compilers 10

Generalization

o Live variable analysis and detection of available
copies are similar:
— Define some information that they need to compute
— Build constraints for the information
— Solve constraints iteratively:

« The information always “increases” during iteration
« Eventually, it reaches a fixed point.

e We would like a general framework
— Framework applicable to many other analyses

— Live variable/copy propagation = instances of the
framework

CS 412/413 Spring 2002 Introduction to Compilers 11

Dataflow Analysis Framework

e Dataflow analysis = a common framework for
many compiler analyses
— Computes some information at each program point

— The computed information characterizes all possible
executions of the program

¢ Basic methodology:

— Describe information about the program using an
algebraic structure called lattice

— Build constraints which show how instructions and
control flow modify the information in the lattice

— Iteratively solve constraints

CS 412/413 Spring 2002 Introduction to Compilers 12

Lattices and Partial Orders

o Lattice definition uses the concept of
partial order relation

o A partial order (P,=) consists of;

—AsetP

— A partial order relation = which is:
1. Reflexive X C X
2. Anti-symmetric XZy,yEX = X=Y
3. Transitive: XCY,YEZ = XCz

o Called “partial order” because not all elements are
comparable

CS 412/413 Spring 2002 Introduction to Compilers 13

Lattices and Lower/Upper Bounds

o Lattice definition uses the concept of
lower and upper bounds

o If (P,c) is a partial order and S < P, then:
1. xeP is a lower bound of S if x £ y, for all yeS
2. xeP is an upper bound of S if y = x, for all yeS

* There may be multiple lower and upper bounds of
the same set S

CS 412/413 Spring 2002 Introduction to Compilers 14

LUB and GLB

* Define least upper bounds (LUB) and greatest
lower bounds (GLB)
o If (P,c) is a partial order and S < P, then:
1. xePis GLB of S if:
a) x is an lower bound of S
b) y £ x, for any lower bound y of S

2. xePis a LUB of S if:
a) x is an upper bound of S
b) x £y, for any upper bound y of S

e ... are GLB and LUB unique?

CS 412/413 Spring 2002 Introduction to Compilers 15

Lattices
e A pair (L) is a lattice if:
1. (L&) is a partial order
2. Any finite subset S < L has a LUB and a GLB
* Can define two operators in lattices:
1. Meet operator: x 1y = GLB({x,y})
2. Join operator: x L'y = LUB({x,y})

e Meet and join are well-defined for lattices

CS 412/413 Spring 2002 Introduction to Compilers 16

Complete Lattices

e A pair (L,=) is a complete lattice if:
1. (L,=) is a partial order
2. Any subset S < L has a LUB and a GLB

¢ Can define meet and join operators

e Can also define two special elements:
1. Bottom element: 1 = GLB(L)
2. Top element: T = LUB(L)

o All finite lattices are complete

CS 412/413 Spring 2002 Introduction to Compilers 17

Example Lattice

* Consider S = {a,b,c} and its power set P =

{0, {a}, {b}, {c}, {a,b}, {b,c}, {a,c} {a,b,c}}

* Define partial order as set inclusion: XcY

— Reflexive XeyY
— Anti-symmetric X<Y,YSX = X=Y
— Transitive XeY,YeZ = XcZ

« Also, for any two elements of P, there is a set
which includes both and another set which is
included in both

* Therefore (P,<) is a (complete) lattice

CS 412/413 Spring 2002 Introduction to Compilers 18

Hasse Diagrams

e Hasse diagram = {a,bc}
graphical
representationofa {a,b} {a,c} {b.c}
lattice where x is
below y whenx =y {a}>< {b} {Cl}
andx#zy \ |

O

CS 412/413 Spring 2002 Introduction to Compilers 19

Power Set Lattice

Partial order: <
(set inclusion)

{a,bc}

Meet: N
(set intersection)

RN
{ab} {ac} {bc}

Join: U
(set union)

| > >
Top element: {a,b,c} {a}\ {b}/{c}

(whole set) |

Bottom element: O 0

(empty set)

CS 412/413 Spring 2002 Introduction to Compilers 20

Reversed Lattice

» Partial order: 2
(set inclusion)

a
e Meet:
(s:teunkijon) / | \
o Join: N {a} {b} {c}

(set intersection) |

> > |
 Top element: O {a,b} {acr {bc}

(empty set) |

* Bottom element: {a,b,c} {a,b.c}
(whole set)
CS412/413 Spring 2002 Introduction to Compilers 21

Relation To Analysis of Programs

« Information computed by live variable analysis
and available copies can be expressed as
elements of lattices

e Live variables: if V is the set of all variables in
the program and P the power set of V, then:

- (P,<) is a lattice
- sets of live variables are elements of this lattice

CS 412/413 Spring 2002 Introduction to Compilers 22

Relation To Analysis of Programs

o Copy Propagation:
- Vis the set of all variables in the program

-V x V the cartesian product representing all
possible copy instructions

- P the power set of V x V
e Then:
- (P,c) is a lattice

- sets of available copies are lattice elements

CS 412/413 Spring 2002 Introduction to Compilers 23

More About Lattices

o In a lattice (L, =), the following are equivalent:
l.xcy
2.Xny=x
3.xuy=y

* Note: meet and join operations were defined
using the partial order relation

CS 412/413 Spring 2002 Introduction to Compilers 24

Proof

e Prove that x = y implies x My = x:
—X is a lower bound of {x,y}
— All lower bounds of {x,y} are less than x,y
—In particular, they are less than x

e Prove thatx My = x impliesx = y :
—X is a lower bound of {x,y}
—Xx is less than x and y
— In particular, x is less than y

CS 412/413 Spring 2002 Introduction to Compilers 25

Proof

e Prove that x = y impliesx Ly = y:
—y is an upper bound of {x,y}
— All upper bounds of {x,y} greater than x,y
—In particular, they are greater than y

e Provethatx LIy = y impliesx =y :
—vy is a upper bound of {x,y}
—y is greater than x and y
—In particular, y is greater than x

CS 412/413 Spring 2002 Introduction to Compilers 26

Properties of Meet and Join

e The meet and join operators are:

1. Associative xnmy)mz=xn(ynz)
2. Commutative Xy =ynx
3. Idempotent: XM X=X

e Property: If *"” is an associative, commutative, and
idempotent operator, then the relation =" defined
as x Sy iff x My = x is a partial order

* Above property provides an alternative definition of
a partial orders and lattices starting from the meet
(join) operator

CS 412/413 Spring 2002 Introduction to Compilers 27

Using Lattices

e Assume information we want to compute in a
program is expressed using a lattice L

¢ To compute the information at each program
point we need to:

— Determine how each instruction in the program
changes the information in the lattice

— Determine how lattice information changes at
join/split points in the control flow

CS 412/413 Spring 2002 Introduction to Compilers 28

Transfer Functions
» Dataflow analysis defines a transfer function
F: L - L for each instruction in the program

* Describes how the instruction modifies the
information in the lattice

* Consider in[I] is information before I, and out[I] is
information after I

Forward analysis: out[I] = F(in[I])
e Backward analysis: in[I] = F(out[I])

CS 412/413 Spring 2002 Introduction to Compilers 29

Basic Blocks

Can extend the concept of transfer function
to basic blocks using function composition

* Consider:

- Basic block B consists of instructions (I, ..., I,) with
transfer functions Fy, ..., F,

— in[B] is information before B
— out[B] is information after B

» Forward analysis: out[B] = F.(...(Fy(in[B])))
e Backward analysis: in[I] = Fy(... (F,(out[i])))

CS 412/413 Spring 2002 Introduction to Compilers 30

Split/Join Points

» Dataflow analysis uses meet/join operations at split/join
points in the control flow

¢ Consider in[B] is lattice information at beginning of
block B and out[B] is lattice information at end of B

» Forward analysis: in[B] = I'l {out[B"] | B'Upred(B)}
e Backward analysis: out[B] = M {in[B"] | B'Usucc(B)}

* Can alternatively use join operation LI (equivalent to
using the meet operation 1 in the reversed lattice)

CS 412/413 Spring 2002 Introduction to Compilers 31

