CS412/413

Introduction to Compilers
Radu Rugina

Lecture 19: Liveness and Copy Propagation
8 Mar 02

Control Flow Graphs

e Control Flow Graph (CFG) = graph representation
of computation and control flow in the program
— framework to statically analyze program control-flow

e In a CFG:
— Nodes are basic blocks; they represent computation
— Edges characterize control flow between basic blocks

e Can build the CFG representation either from the
high IR or from the low IR

CS 412/413 Spring 2002 Introduction to Compilers 2

Build CFG from High IR

while (c) {
X=y+1;
y=2%z
if (d) x=y+z;
z=1;

z=X;

CS 412/413 Spring 2002 Introduction to Compilers

Build CFG from Low IR

label L1
fjump c L2
Xx=y+1; X=y+1;
y=2%*z y=2%z

label L3
z=1;
jump L1
label L2
z=X;

fjump d L3 fjump d L3
X=y+z - . ;

label L3

CS 412/413 Spring 2002 Introduction to Compilers 4

Using CFGs

* Next: use CFG representation to statically
extract information about the program
— Reason at compile-time

— About the run-time values of variables and
expressions in all program executions

e Extracted information example: live variables

o Idea:
— Define program points in the CFG
— Reason statically about how the information flows
between these program points

CS412/413 Spring 2002 Introduction to Compilers

Program Points

e Two program points for each instruction:
— There is a program point before each instruction
— There is a program point after each instruction

Point before ——— o
X =y+1
Point after o

* In a basic block:

— Program point after an instruction = program point
before the successor instruction

CS 412/413 Spring 2002 Introduction to Compilers 6

Program Points: Example

e Multiple successor blocks .
means that point at the x=y+l
end of a block has multiple .
successor program points y =2%z

L]

¢ Depending on the if (d)

execution, control flows .

from a program point to

one of its successors .

X =y+z
L]

Also multiple predecessors

How does information
propagate between
program points?

CS 412/413 Spring 2002 Introduction to Compilers 7

Flow of Extracted Information

» Question 1: how does information
flow between the program points
before and after an instruction? y =2%z

L]
x=y+1
L]

L]
 Question 2: how does information if (d)
flow between successor and °
predecessor basic blocks? .
X =y+z
L]

e .. in other words:

Q1: what is the effect of instructions? °
Q2: what is the effect of control flow? z=1

CS 412/413 Spring 2002 Introduction to Compilers 8

Using CFGs

e To extract information: reason about how it
propagates between program points

o Rest of this lecture: how to use CFGs to

compute information at each program point for:

— Live variable analysis, which computes live variables
are live at each program point

— Copy propagation analysis, which computes the
variable copies available at each program point

CS 412/413 Spring 2002 Introduction to Compilers 9

Live Variable Analysis

e Computes live variables at each program point

- L.e. variables holding values which may be used later
(in some execution of the program)

e For an instruction I, consider:
— in[I] = live variables at program point before I
— out[I] = live variables at program point after I

» For a basic block B, consider:
— in[B] = live variables at beginning of B
— out[B] = live variables at end of B

If I = first instruction in B, then in[B] = in[I]
If I' = last instruction in B, then out[B] = out[I']

CS 412/413 Spring 2002 Introduction to Compilers 10

How to Compute Liveness?

e Answer question 1: for each in[1]
instruction I, what is the relation I
between in[I] and out[I] ? outfI]

e Answer question 2: for each
basic block B with successor
blocks B;, ..., B, what is the
relation between out[B] and
in[Bl]l = In[Bn]-’

CS 412/413 Spring 2002 Introduction to Compilers 11

Part 1: Analyze Instructions

* Question: what is the relation between in[I]

sets of live variables before and after 1
an instruction? out[I]
e Examples:

inf1] = {y.z} infI] = {y.zt} in[I] = {x,t}
X =y+z X =y+z X = X+1
out[I] = {z} out[I] = {x,t} out[I] = {x,t}
e ... is there a general rule?

CS 412/413 Spring 2002 Introduction to Compilers 12

Analyze Instructions

* Yes: knowing variables live after I,

can compute variables live before I: in[1]
— All variables live after I are also live I
before 1, unless I defines (writes) them out[I]

— All variables that I uses (reads) are also
live before instruction I

o Mathematically:
in[I] = (out[I] — defI]) U use[I]

where:
— def[I] = variables defined (written) by instruction I
— use[I] = variables used (read) by instruction I

CS 412/413 Spring 2002 Introduction to Compilers 13

Computing Use/Def

e Compute use[I] and def[I] for each instruction I:
iflisx=yOPz: use[l] ={y,z} def[l] ={x}
iflisx=0Py : use[l] ={y} def[I] = {x}

iflisx=y i use[I] = {y} def[I] = {x}
iflisx=addry: use[l]={} def[I] = {x}
if Tis if (x) : use[I] = {x} def[I] = {}

ifIisreturnx : wuse[I] = {x} def[I] = {}
iflisx= f(YlI"'I Yn) : USe[I] = {YII"'I Yn}
def[I] = {x}

(For now, ignore load and store instructions)

CS 412/413 Spring 2002 Introduction to Compilers 14

Example

e Example: block B with three
instructions I1, 12, I3: Block B

Livel = in[B] = in[I1]

. : Livel
Live2 = out[I1] = in[12] | x=y+l
Live3 = out[I2] = in[I3] Live2
Live4 = out[I3] = out[B] 2| y=2*
o Relation between Live sets: Live3
Livel = (Live2-{x}) u {y} 3| if(d)
Live2 = (Live3-{y}) u {z} Live4
Live3 = (Live4-{}) u {d}
CS 412/413 Spring 2002 Introduction to Compilers 15

Backward Flow

e Relation: in[1]
in[I] = (out[I] — def[1]) U use[l] 1 ﬁ
out[I]

¢ The information flows backward!

e Instructions: can compute in[I] if we

know out[I] In[B]
X =y+1
e Basic blocks: information about live y =2%z
variables flows from out[B] to in[B] if (d)
out[B]
CS 412/413 Spring 2002 Introduction to Compilers 16

Part 2: Analyze Control Flow

e Question: for each basic block B
with successor blocks By, ..., B,
what is the relation between
out[B] and in[B,], ..., in[B,]?

e Examples:

e What is the general rule?

CS 412/413 Spring 2002 Introduction to Compilers 17

Analyze Control Flow

e Rule: A variables is live at end of block B if it is
live at the beginning of one successor block

o Characterizes all possible program executions

o Mathematically:

out[B] = o

J® in[B"]

e Again, information flows backward: from
successors B’ of B to basic block B

CS 412/413 Spring 2002 Introduction to Compilers 18

Constraint System

e Put parts together: start with CFG and derive a
system of constraints between live variable sets:

in[I] = (out[I] - def[I]) U use[I] for each instruction I
out[B] = g (B)in[B’] for each basic block B

e Solve constraints:
— Start with empty sets of live variables
— Iteratively apply constraints
— Stop when we reach a fixed point

CS 412/413 Spring 2002 Introduction to Compilers 19

Constraint Solving Algorithm

For all instructions in[I] = out[I] = O
Repeat
For each instruction I
in[I] = (out[I] — def[I]) U use[I]
For each basic block B
out[B] = s’*slﬁic(s)in[B’]

Until no change in live sets

CS 412/413 Spring 2002 Introduction to Compilers 20

Example

def = {y}, use = {z} —
def = {}, use = {d} ———

def = {x}, use = {y,z}

def ={x}, use={} ——— -

def = {z}, use ={x}-—————— Z=X

CS 412/413 Spring 2002 Introduction to Compilers 21

Copy Propagation
» Goal: determine copies available at each program point
» Information: set of copies <x=y> at each point

e For each instruction I:
— in[I] = copies available at program point before I
— out[I] = copies available at program point after I

e For each basic block B:
— in[B] = copies available at beginning of B
— out[B] = copies available at end of B

If I = first instruction in B, then in[B] = in[I]
If I’ = last instruction in B, then out[B] = out[I']

CS 412/413 Spring 2002 Introduction to Compilers 22

Same Methodology
1. Express flow of information (i.e. available copies):
- For points before and after each instruction (in[I], out[I])
- For points at exit and entry of basic blocks (in[B], out[B])

2. Build constraint system using the relations between
available copies

3. Solve constraints to determine available copies at
each point in the program

CS 412/413 Spring 2002 Introduction to Compilers 23

Analyze Instructions

e Knowing in[I], can compute out[I]:

- Remove from in[I] all copies <u=v> if in[1]
variable u or v is written by I I
- Keep all other copies from in[I] out[I]

- If Iis of the form x=y, add it to out[I]

o Mathematically:
out[I] = (in[I] = Kkill[I]) u gen[I]
where:
— Kill[I] = copies “killed” by instruction I
— gen[I] = copies “generated” by instruction I

CS 412/413 Spring 2002 Introduction to Compilers 24

Computing Kill/Gen
* Compute kill[I] and gen[I] for each instruction I:

iflisx=yOPz: gen[l] ={} kill[I] = {u=v|u or v is x}

iflisx=0Py : gen[l] ={} kill[I] = {u=v|u or v is x}

iflisx=y 1 gen[I] = {x=y} Kill[I] = {u=v|u or v is x}

iflisx =addry: gen[I] = {} kill[I] = {u=v|u orv is x}

if Lis if (x) 1 gen[I] ={} kill[1] = {}

iflisreturnx : gen[I] = {} kill[1] = {}

ifLis x = f(yy,..., y,) : gen[I] = {} Kkill[I] = {u=v| uorvisx}

(again, ignore load and store instructions)

CS 412/413 Spring 2002 Introduction to Compilers 25

Forward Flow

* Relation: in[1]
out[I] = (in[I] —kill[I]) U gen[I] 1 ﬁ
out[I]

e The information flows forward!

Instructions: can compute out[I] if

we know in[I] In[B]
xX=y
¢ Basic blocks: information about y =2%z
available copies flows from in[B] to if (d)
out[B] out[B]
CS 412/413 Spring 2002 Introduction to Compilers 26

Analyze Control Flow

* Rule: A copy is available at end of block B if it is
live at the beginning of all predecessor blocks

» Characterizes all possible program executions

e Mathematically:
in[B]= N out[B]

B’ [pred(B)

¢ Information flows forward: from predecessors B’
of B to basic block B

CS 412/413 Spring 2002 Introduction to Compilers 27

Constraint System

» Build constraints: start with CFG and derive a system of
constraints between sets of available copies:

{out[l] = (in[I] = Kkill[I]) u gen[I] for each instruction I

inN[Bl]= N out[B] for each basic block B
B’ Upred(B)

* Solve constraints:
— Start with empty sets of available copies
— Iteratively apply constraints
— Stop when we reach a fixed point

CS 412/413 Spring 2002 Introduction to Compilers 28

Example

¢ What are the available
copies at the end of
the program?

x=y?

z=t?

CS 412/413 Spring 2002 Introduction to Compilers 29

Summary

» Extracting information about live variables and
available copies is similar
— Define the required information
— Define information before/after instructions
— Define information at entry/exit of blocks
— Build constraints for instructions/control flow
— Solve constraints to get needed information

o ..is there a general framework?
— Yes: dataflow analysis!

CS 412/413 Spring 2002 Introduction to Compilers 30

