CS412/413

Introduction to Compilers
Radu Rugina

Lecture 16: Efficient Translation to Low IR
25 Feb 02

Intermediate Representation

» High IR: captures high-level language constructs
— Has a tree structure very similar to AST
— Has expression nodes (ADD, SUB, etc) and statement
nodes (if-then-else, while, etc)

* Low IR: captures low-level machine features
- Is a instruction set describing an abstract machine

— Has arithmetic/logic instructions, data movement
instructions, branch instructions, function calls

CS 412/413 Spring 2002 Introduction to Compilers 2

IR Lowering

* Use temporary variables for the translation

e Temporary variables in the Low IR store intermediate
values corresponding to the nodes in the High IR

High IR Low IR
tl=a
MUL t2=b
SUB/ b - Mob
ADD m t4a=b
/NN t5=c
a b ¢ d
t5=t4+15
t=t3*t5
CS 412/413 Spring 2002 Introduction to Compilers 3

Lowering Methodology

* Define simple translation rules for each High IR node
— Arithmetic: el + €2, el — €2, etc.
— Logic: el AND e2, el OR €2, etc.
— Array access expressions: el[e2]
— Statements: if (e) then s1 else s2, while (e) s1, etc.
— Function calls f(el, ..., eN)

e Recursively traverse the High IR trees and apply the

translation rules
e Can handle nested expressions and statements

CS 412/413 Spring 2002 Introduction to Compilers 4

IR Lowering Efficiency

if-then
PN
C if-then
/\
d
tl=c a b
fjump t1 Lend1
t2=d fjump c Lend
fjump t2 Lend2 ’
t3=b fjump d Lend
a=13 a=b
label Lend2 Label Lend
label Lend1

CS412/413 Spring 2002 Introduction to Compilers

Efficient Lowering Techniques

e How to generate efficient Low IR:

1. Reduce number of temporaries
1. Don't use temporaries that duplicate variables
2. Use “accumulator” temporaries
3. Reuse temporaries in Low IR

2. Don't generate multiple adjacent label instructions

3. Encode conditional expressions in control flow

CS 412/413 Spring 2002 Introduction to Compilers 6

No Duplicated Variables

e Basic algorithm:

— Translation rules recursively traverse expressions until
they reach terminals (variables and numbers)

— Then translate t = [[v] into t = v for variables
- And translate t = [n] into t = n for constants

e Better:
— terminate recursion one level before terminals
— Need to check at each step if expressions are terminals

— Recursively generate code for children only if they are
non-terminal expressions

CS 412/413 Spring 2002 Introduction to Compilers 7

No Duplicated Variables

e t=[elOPe2]
tl=[el], ifelisnotterminal
t2=[e2], ife2is notterminal
t=x10Px2
where:
x1 = t1, if el is not terminal
x1 = el, if el is terminal
X2 = t2, if e2 is not terminal
X2 = €2, if e2 is terminal

« Similar translation for statements with conditional
expressions: if, while, switch

CS 412/413 Spring 2002 Introduction to Compilers 8

Example

o t=[(at+b)*c]
e Operand el = a+b, is not terminal

e Operand e2 = ¢, is terminal
e Translation: ti=[el]

t=tl*c

e Recursively generate code for t1 = [el |

e For el = a+b, both operands are terminals
e Codefor t1=[el] is tl =b+c

e Final result: ti=b+c
t=tl*c

CS 412/413 Spring 2002 Introduction to Compilers 9

Accumulator Temporaries

e Use the same temporary variables for operands
and result

e Translatet = el OP e2] as:

t=[el]
til=[e2]
t=tOPtl
e Example: t=[(a+b)*c]
t=b+c
t=t*c
CS 412/413 Spring 2002 Introduction to Compilers 10

Reuse Temporaries

e Idea: in the translation of t = [e1 OP €2] as:
t=[el],tt=[e2],t=tO0OPt
temporary variables from the translation of el can
be reused in the translation of €2
e Observation: temporary variables compute
intermediate values, so they have limited lifetime
e Algorithm:
— Use a stack of temporaries

— This corresponds to the stack of the recursive invocations
of the translation functionst=[e]

— All the temporaries on the stack are alive

CS 412/413 Spring 2002 Introduction to Compilers 11

Reuse Temporaries

« Implementation: use counter c to implement the stack
— Temporaries t(0), ...,t(c) are alive
— Temporaries t(c+1), t(c+2), ... can be reused
— Push means increment ¢, pop means decrement c

» In the translation of t(c) = [e1 OP €2 |
tc)=[el]

t(c) = t(c) OP t(c+1)

CS 412/413 Spring 2002 Introduction to Compilers 12

Example
* 0= (2*b) + ((c*d) - (*M)]

t0=a*b
rrrrrrrrrrrrrr c=c+l
tl =cXd
rrrrrrrrrrrrrr c=c+l
t2 = e*f
rrrrrrrrrrrrrr c=cl
t1=t1-12
rrrrrrrrrrrrrr c=cl
t0 = t0+t1
CS 412/413 Spring 2002 Introduction to Compilers 13

Trade-offs

* Benefits of fewer temporaries:
— Smaller symbol tables

— Smaller analysis information propagated during dataflow
analysis

o Drawbacks:
— Same temporaries store multiple values
— Some analysis results may be less precise

— Also harder to reconstruct expression trees (which may be
convenient for instruction selection)

e Possible compromise:

— Use different temporaries for intermediate expression values in
each statement

— Use same temporaries in different statements

CS 412/413 Spring 2002 Introduction to Compilers 14

No Adjacent Labels

Translation of control flow constructs (if, while, switch)
and short-circuit conditionals generates label instructions
Nested if/while/switch statements and nested short-
circuit AND/OR expressions may generate adjacent labels

* Simple solution: have a second pass that merges
adjacent labels

— And a third pass to adjust the branch instructions

* More efficient: backpatching
— Directly generate code without adjacent label instructions
— Code has placeholders for jump labels, fill in labels later

CS 412/413 Spring 2002 Introduction to Compilers 15

Backpatching

Keep track of the return label (if any) of translation of each
HighIRnode:t=[¢e, L]

No end label for a translation: L = O

Translate t = [e1 SC-OR e2, L] as:

ti=[el, L1]
tjumptlL
tl=[e2L2]

e IfL2 = 0O: L is new label; add ‘label L’ to code
e IfL2 #0: L =L2; don't add label instruction

* Then fill placeholder L in jump instruction and set L = end
label of the SC-OR construct

CS 412/413 Spring 2002 Introduction to Compilers 16

Example

e t=[(a<b)OR(c<dORd<e), L]

t=a<b

tumptiL t=c<d
flump tL’
t=d<e
label Lend

* Backpatcht=[c<dORd<e,L'] :L" = Lend
e Backpatch t = [(a<b) OR (c<d ORd<e),L]:L =L"= Lend

CS 412/413 Spring 2002 Introduction to Compilers 17

Backpatching

Similar rules for end labels of short-circuit OR, and for control-
flow statements: if-then-else, if-then, while, switch

» Keep track of end labels for each of these constructs

* Translations may begin with a label: while statements start
with a label instruction for the test condition

* For a statement sequence s1;s2 : should merge end label of

s1 with start label of s2

* Need to pass in the end label of s1 to the recursive
translation of s2

= Translation of each statement: receives end label of
previous statement, returns end label of current statement

CS 412/413 Spring 2002 Introduction to Compilers 18

Encode Booleans in Control-Flow
e Consider [if (a<bANDc<d)x=y;]

t=a<b
fjlump t L1
t=c<d
label L1
fjump t L2 }

X=y Control flow: if (|) x =y
label L2

Condition: t = a<b AND c<d

* .. can we do better?

CS 412/413 Spring 2002 Introduction to Compilers 19

Encode Booleans in Control-Flow

e Consider [if (a<bANDc<d)x=y;]

t=as<b t=a<b

?inlig L1 fjump t L2

label L1 t=c<d Condition and
i fjump t L2 control flow
f]ul'np tL2 x=y

e label L2

» Ift = a<b is false, program branches to label L2
* Encode (a<b) == false to branch directly to the end label

CS 412/413 Spring 2002 Introduction to Compilers 20

How It Works

* For each boolean expression e:
[e L1, L2]
is the code that computes e and branches to L1 if e evaluates
to true, and to L2 if e evaluates to false
* New translation: [if(e) then s |
[e Ll L2]
label L1
[s]
label L2

« Also remove sequences ‘jump L, label L’

CS 412/413 Spring 2002 Introduction to Compilers 21

Define New Translations

o Must define:
[s1 forif, while statements
[e L1, L2] for boolean expressions e

» [if(e) then sl else s2]
Le Ll L2]
label L1
[s1]
jump Lend
label L2
[s2]
label Lend

CS 412/413 Spring 2002 Introduction to Compilers 22

While Statement

o [while(e)s]

label Ltest
[eLlL2]
label L1
[s1]

jump Ltest
label L2

* Code branches directly to end label when e evaluates to false

CS 412/413 Spring 2002 Introduction to Compilers 23

Boolean Expression Translations
e [true, L1,L2]: jumplLl
o [false, L1,L2]: jumpL2

e [elSC-ORe2, L1, 12]
[e1, L1, Lnext]
label Inext
[e2,L1,L2]

e [e1SC-ANDe2,L1,L2]
[el, Lnext, L2]
label Inext
[e2,L1,L2]

CS 412/413 Spring 2002 Introduction to Compilers 24

