CS412/413

Introduction to Compilers
Radu Rugina

Lecture 3: Finite Automata
25 Jan 02

Outline
¢ Regexp review
e DFAs, NFAs
e DFA simulation

o RE-NFA conversion
* NFA-DFA conversion

CS 412/413 Spring 2002 Introduction to Compilers 2

Regular Expressions

o If R and S are regular expressions, so are:

€ empty string

a for any character a

RS (concatenation: "R followed by S")
R|S (alternation: “R or S”)

Regular Expression Extensions

o If R is a regular expressions, so are:

R? =€ | R (zero or one R)

R+ = RR* (one or more R’s)

(R) = R (no effect: grouping)
[abc] = a|b|c (any of the listed)
[a-e] = a|b|...| e (character ranges)
[~ab] = c|d|...

(anything but the listed chars)

CS412/413 Spring 2002 Introduction to Compilers 4

R * (Kleene star: “zero or more R’s")
CS 412/413 Spring 2002 Introduction to Compilers 3
Concepts

e Tokens = strings of characters representing the lexical
units of the programs, such as identifiers, numbers,
keywords, operators

— May represent a unique character string (keywords, operators)
— May represent multiple strings (identifiers, numers)

e Regular expressions = concise description of tokens
— A regular expressions describes a set of strings

¢ Language denoted by a regular expression = the set of
strings that it represents
- L(R) is the language denoted by regular expression R

CS 412/413 Spring 2002 Introduction to Compilers 5

How To Use Regular Expressions

* We need a mechanism to determine if an
input string w belongs to the language
denoted by a regular expression R

Input stingw |
in the program Yes, if w = token
—>
. No, if w # token
Regex R which
describes a token

e Such a mechanism is called an acceptor

CS 412/413 Spring 2002 Introduction to Compilers 6

Acceptors

o Acceptor = determines if an input string
belongs to a language L

Input W —

String Yes, ifwOL
Acceptor |—
No, ifwOL

Language L —

 Finite Automata = acceptor for languages
described by regular expressions

CS 412/413 Spring 2002 Introduction to Compilers 7

Finite Automata

» Informally, finite automata consist of:
— A finite set of states
- Transitions between states
— An initial state (start state)
— A set of final states (accepting state)

e Two kinds of finite automata:

— Deterministic finite automata (DFA): the transition
from each state is uniquely determined by the
current input character

— Non-deterministic finite automata (NFA): there
may be multiple possible choices or some
transitions do not depend on the input character

CS 412/413 Spring 2002 Introduction to Compilers 8

DFA Example

« Finite automaton that accepts the strings in
the language denoted by the regular

expression ab*a b

— A graph a 3@

a b
- 0 1 Error
— A transition table 1 2 1
2| Error Error
CS 412/413 Spring 2002 Introduction to Compilers 9

Simulating the DFA

» Determine if the DFA accepts an input string

trans_table[NSTATES][NCHARS] b
accept_states[NSTATES] .

state = INITIAL H

while (state != ERROR) {
¢ = input.read();
if (c == EOF) break;
state = trans_table[state][c];

return accept_states[state];

CS412/413 Spring 2002 Introduction to Compilers 10

RE - Finite automaton?

* Can we build a finite automaton for every
regular expression?

e Strategy: build the finite automaton
inductively, based on the definition of regular
expressions

€ a

~O ~-O0*0

CS 412/413 Spring 2002 Introduction to Compilers 1

RE - Finite automaton?

R automaton

¢ AlternationR | S
S automaton

/f——~\ ?,/——‘\
« Concatenation: R S "Q___‘O,' "Q @/‘

R automaton S automaton

CS 412/413 Spring 2002 Introduction to Compilers 12

NFA Definition

¢ A non-deterministic finite automaton (NFA) is
an automaton where the state transitions are
such that:

— There may be e-transitions (transitions which do
not consume input characters)

— There may be multiple transitions from the same
state on the same input character

Example:

regexp?

CS 412/413 Spring 2002 Introduction to Compilers 13

RE = NFA intuition

-?[0-9]+ (-]€) [0-9][0-9]*

CS 412/413 Spring 2002 Introduction to Compilers 14

NFA construction

* NFA only needs one stop state (why?)
e Canonical NFA:

¢ Use this canonical form to inductively
construct NFAs for regular expressions

CS412/413 Spring 2002 Introduction to Compilers 15

Inductive NFA Construction

RS

R*

CS412/413 Spring 2002 Introduction to Compilers 16

DFA vs NFA

» DFA: action of automaton on each input
symbol is fully determined
— obvious table-driven implementation

o NFA:
—automaton may have choice on each step

—automaton accepts a string if there is any
way to make choices to arrive at accepting
state / every path from start state to an
accept state is a string accepted by
automaton

— not obvious how to implement!

CS 412/413 Spring 2002 Introduction to Compilers 17

Simulating an NFA

¢ Problem: how to execute NFA?
“strings accepted are those for which there is
some corresponding path from start state to
an accept state”

e Conclusion: search all paths in graph
consistent with the string

e Idea: search paths in parallel

— Keep track of subset of NFA states that search
could be in after seeing string prefix

— “Multiple fingers” pointing to graph

CS 412/413 Spring 2002 Introduction to Compilers 18

Example

¢ Input string: -23

¢ NFA states: - 0-9 .
{0,1})
) (0) (D—(2) ©)
(2,3} € 0-9
{2,3}
CS 412/413 Spring 2002 Introduction to Compilers 19

NFA-DFA conversion

« Can convert NFA directly to DFA by same approach

« Create one DFA for each distinct subset of NFA
states that could arise

» States: {0,1}, {1}, {2, 3}

CS 412/413 Spring 2002 Introduction to Compilers 20

Algorithm

e For a set S of states in the NFA, compute
e-closure(S) = the set of states reachable from states in
S by e-transitions
T=S
Repeat T =T U {s | s'00T, (s,s) is e-transition}
Until T remains unchanged
e-closure(S) =T

e For a set S of states in the NFA, compute
DFAedge(S,c) = the set of states reachable from states
in S by transitions on character c and e-transitions

DFAedge(S,c) = e-closure({ s | s'S, (s',s) is c-transition})

CS412/413 Spring 2002 Introduction to Compilers 21

Algorithm

» Top-level algorithm:

DFA-initial-state = e-closure(NFA-initial-state)

For each DFA-state S
For each character ¢
S’ = DFAedge(S,c)
Add an edge (S, S’) labeled with
character c in the DFA

For each DFA-state S
If S contains an NFA-final state
Mark S as DFA-final-state

CS412/413 Spring 2002 Introduction to Compilers 22

Putting the Pieces Together

Regular —|,| RE= NFA
Expression Conversion
!
NFA = DFA
Conversion
1
mput o] DFA 1, { Yes, if w O L(R)
String Simulation No, if w O L(R)

CS 412/413 Spring 2002 Introduction to Compilers 23

