
1

CS 412
Introduction to Compilers

Andrew Myers

Cornell University

Lecture 28: Dataflow analysis frameworks

9 Apr 01

CS 412/413 Spring '01 -- Andrew MyersLecture 28 2

Administration
• Homework 4 due Friday the 13th

• Prelim April 17, 7:30PM-9:30PM

– static semantics, IR and assembly code
generation, object-oriented languages, data-
flow analysis, optimization

CS 412/413 Spring '01 -- Andrew MyersLecture 28 3

Available expressions
• Idea: want to perform common

subexpression elimination

• Transformation is safe if original x+1 is an
available expression (still computes same value)

a = x+1
…

b = x+1

a = x+1
…

b = a

CS 412/413 Spring '01 -- Andrew MyersLecture 28 4

Dataflow values
• Let in[n], out[n] be sets of nodes whose

computed expression is available at n
n gen[n] kill[n]

a=b OP c {n} – kill[n] uses(a)

a=[b] {n} – kill[n] uses(a)

[a]=b {} uses([x])
(for all x that may be equal to a)

a=f(b1,…bn) {} uses([x]) (for all x)

other {} {}

CS 412/413 Spring '01 -- Andrew MyersLecture 28 5

Constraints
out[n] ⊇ gen[n]

“An expression made available by n at least
reaches n’s output”

in[n�] ⊆ out[n] (if n� is succ. of n)
“An expression is available at n� only if it is
available at every predecessor n”

out[n] ∪ kill[n] ⊇ in[n]

“An expression available on input is either
available on output or killed”

CS 412/413 Spring '01 -- Andrew MyersLecture 28 6

Dataflow equations
out[n] ⊇ gen[n]
in[n�] ⊆ out[n] (if n� is succ. of n)
out[n] ∪ kill[n] ⊇ in[n]

Equations for iterative solution:
out[n] = gen[n] ∪ (in[n] – kill[n])
in[n�] = �n ∈ pred[n�] out[n]

�=� Starting condition:

in[n] is set of all nodes
in[start]= Ø

2

CS 412/413 Spring '01 -- Andrew MyersLecture 28 7

Dataflow analysis
• Propagates information about program through

flowgraph. Dataflow values make up space L

• Solution: in[n], out[n]∈ L for every node n

• Live variable analysis: set of live variables

• Available expressions: set of available exprs

CS 412/413 Spring '01 -- Andrew MyersLecture 28 8

Dataflow analysis framework
Dataflow analysis characterized by:

1. Space of values L
2. Flow function Fn for every node n
out[n] = Fn(in[n])
Fn : L→L

“If l ∈ L is true before executing node n,
Fn(l) is true afterward”

All analyses so far: Fn(l) = gen[n] � (l – kill[n])
Live vars: Fn(l) = use[n] � (l – def [n])

(gen=use, kill=def)

n

l

Fn(l)

CS 412/413 Spring '01 -- Andrew MyersLecture 28 9

Combining operator
1. Space of values L

2. Flow function Fn for every node n

3. Combining operator �

“If we know either l1 or l2 holds
on entry to n, we know at
most l1 � l2”

in[n] = �n�∈ pred[n] out[n�]

live vars: �=� avail exprs: �=�

l1 l2

l1 � l2

CS 412/413 Spring '01 -- Andrew MyersLecture 28 10

Iterative analysis

for all n, in[n] = out[n] = �
repeat until no change

for all n
in[n] = �n’ ∈ pred[n] out[n’]
out[n] = Fn(in[n])

end
end

4. maximum information �∈ L

CS 412/413 Spring '01 -- Andrew MyersLecture 28 11

Questions
Will iterative analysis

– produce a solution when it terminates?

– produce the best solution possible?

– terminate?

• Depends on properties of L, Fn, �

CS 412/413 Spring '01 -- Andrew MyersLecture 28 12

L as partial order
• Best solution has as much information as

possible – allows most optimization
– Live variables: smallest possible set
– Available expressions: largest possible set

• Some dataflow values contain more
information: l1 � l2 if l2 has at least as
much information as l1

• Live variables: l1 � l2 ⇔ l1 ⊇ l2

• Available expressions: l1 � l2 ⇔ l1 ⊆ l2

3

CS 412/413 Spring '01 -- Andrew MyersLecture 28 13

Partial orders
• L is a partial order defined by

ordering relation �

• Some elements are incomparable

• Properties of a partial order

x � x (reflexive)

x � y ∧ y � z � x � z (transitive)

x � y ∧ y � x � x = y (anti-symmetry)

• Examples: integers ordered by �, types ordered
by <:, sets ordered by ⊆ or ⊇ .

CS 412/413 Spring '01 -- Andrew MyersLecture 28 14

Example: subsets of {a,b,c}

{a}{b}

{a,b}

{c }

{a,c}{b,c}

� = {a,b,c}

x

y
x � y

{ } = �

� = ⊆
� = ∩
� = ∪

height: 3

Hasse diagram

CS 412/413 Spring '01 -- Andrew MyersLecture 28 15

Greatest lower bound
• Combining operator l1 � l2 gives element l such

that l � l1, l � l2

• l is a lower bound for l1, l2 (consistent with both)

• Want greatest such element (most info):
greatest lower bound (GLB)

• Partial order with GLB/meet (�) and LUB/join
(�) is a lattice

• With only GLB, a lower semilattice

CS 412/413 Spring '01 -- Andrew MyersLecture 28 16

Meet-over-paths solution
• Consider traversal of flowgraph visiting

nodes a, b, c, …, n
• Assume l0 is initial information
• Knowable information is

Fn(…(Fc(Fb (Fa (l0))))
• Best possible solution is l such that

l � Fn(…(Fc(Fb (Fa (l0))))
for all paths a, b, c, …, n

• MOP (meet-over-paths) soln:
�all paths p Fp

1
(Fp

2
(Fp

3
(…)))

CS 412/413 Spring '01 -- Andrew MyersLecture 28 17

Data-flow equations
• Algorithm repeatedly recomputes each out[n] as

Fn(�n� ∈ pred[n] out[n�])

• Let x1…xn be out[1]…out[n]. Algorithm:

xi = Fi(�j ∈ pred[i] xj)

• Solution is point in Ln : X = (x1,…xn)

• Total set of equations is X = F(X) where

F(X) = (F1(�j ∈ pred[1] xj), F2(�j ∈ pred[2] xj), …)

• Any solution to constraints is fixed point of F

CS 412/413 Spring '01 -- Andrew MyersLecture 28 18

Fixed points
• Iterative analysis: initialize all xi with top

of lattice (X0 = (�, �, �,…)), apply F(X)
until fixed point is reached:

Fk(X0) = Fk+1(X0)

• Fk(X0) is a fixed point of F: a value that F
maps to itself

• Wanted: maximal fixed point

4

CS 412/413 Spring '01 -- Andrew MyersLecture 28 19

Monotonicity
• Flow functions map lattice values to other

lattice values; must be monotonic

• Monotonicity:

l1 � l2 � F(l1) � F(l2)
“If you have more information entering a node,

you have at least as much leaving”

• Example: reaching definitions. Lattice is all sets
of defining nodes ordered by subset relation:

Fn(x) = gen[n] � (x - kill[n])

CS 412/413 Spring '01 -- Andrew MyersLecture 28 20

Termination
• First step either lowers some xi or terminates

• Second step sees same xi as first step (�), or
possibly lower: F(X0) � X0

• Monotonicity l1 � l2 � F(l1) � F(l2)

� output of second step F2(X0) is lower than first
step (or it terminates): F2(X0) � F1(X0)

• Induction: each iteration moves at least one
node lower in lattice: Fi+1(X0) � Fi (X0)

• # algorithm steps to fixed point is at most height
of lattice H times number of nodes n: k = O(nH)

CS 412/413 Spring '01 -- Andrew MyersLecture 28 21

Solution quality
• MOP is best possible solution:

�all paths p Fp1(Fp2(Fp3(…)))

• Does iterative analysis
xi = Fi(�j ∈ pred[i] xj)

produce the MOP solution?

• Yes, if flow functions distribute over the meet
operator:

�i Fn(xi) = Fn (�i xi)

• Not all analyses give MOP solution!

CS 412/413 Spring '01 -- Andrew MyersLecture 28 22

Reaching definitions
• L is all sets of defining nodes in call flow graph.

Maximum information means smallest possible
lists of reaching definitions, so:

• Top (�) is the empty set { }, meet (�) is set
union (�)

xn = out[n]

Fn(x) = gen[n] ∪ (x – kill[n])

in[n] = �n’ ∈ prev[n] out[n’]
out[n] = gen[n] ∪ (in[n] - kill[n])

xi = Fi(�j ∈ pred[i] xj)

CS 412/413 Spring '01 -- Andrew MyersLecture 28 23

Monotonic?
Fn(x) = gen[n] ∪ (x – kill[n])

x1 � x2 = x1 ∪ x2

x � y ⇔ x ⊇ y

• Is Fn(x) monotonic?

Fn(x) = gen[n] ∪ (x – kill[n])

Fn(x ∪ y) = gen[n] ∪ ((x ∪ y) – kill[n]) =

gen[n] ∪ (x – kill[n]) ∪ (y – kill[n]) =
Fn(x) ∪ (y – kill[n])

CS 412/413 Spring '01 -- Andrew MyersLecture 28 24

MOP?
Fn(x) = gen[n] ∪ (x – kill[n])

x1 � x2 = x1 ∪ x2

• Does Fn(x) distribute over � ?

Fn(x � y) = Fn(x ∪ y)
= gen[n] ∪ ((x ∪ y) – kill[n])
= (gen[n] ∪ (x – kill[n]))

∪ (gen[n] ∪ (y – kill[n]))

= Fn(x) ∪ Fn(y) = Fn(x) � Fn(y)

∴ Iterative analysis always terminates, finds the
best possible (meet-over-paths) solution to
reaching definitions

5

CS 412/413 Spring '01 -- Andrew MyersLecture 28 25

Other analyses
• Live variables

Fn(l) = use[n] � (l – def [n])

� = �

• Available expressions

Fn(l) = gen[n] � (l – kill[n])

� = 	

• Computes MOP solutions?

CS 412/413 Spring '01 -- Andrew MyersLecture 28 26

Summary
• Analyses for standard optimizations fit

into dataflow analysis framework

• Iterative analysis finds solution if flow
function monotonic in �, combining
function � defines lower semilattice

• Solution is MOP if distribution condition

�i F(xi) = F(�i xi) holds

