Introduction to Compilers
Andrew Myers
Cornell University

Lecture 28: Dataflow analysis frameworks
9 Apr 01

Administration
» Homework 4 due Friday the 13th

e Prelim April 17, 7:30Pm-9:30pPM

—static semantics, IR and assembly code
generation, object-oriented languages, data-
flow analysis, optimization

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 2

Available expressions

¢ Idea: want to perform common
subexpression elimination

a=x+1 a=x+1

b= x+1 q b=a

e Transformation is safe if original x+1 is an
available expression (still computes same value)

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 3

Dataflow values

e Letin[n], out[n] be sets of nodes whose
computed expression is available at n

n gen[n] kill[n]

a=bOPc {n}—Kkill[n] uses(a)

a=[b] {n} —kill[n] uses(a)

[a]=b { uses([x])

(for all x that may be equal to a)
a=f(b,,...b,) {} uses([x]) (for all x)
other { {

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 4

Constraints
out[n] O gen[n]
“An expression made available by n at least
reaches n’s output”
in[n"] O out[n] (if n" is succ. of n)
“An expression is available at n” only if it is
available at every predecessor n”

out[n] O kill[n] O in[n]

“An expression available on input is either
available on output or killed”

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 5

Dataflow equations
out[n] O gen[n]
in[n'] Oout[n] (if n"is succ. of n)
out[n] O kill[n] O in[n]

Equations for iterative solution:
out[n] = gen[n] O (in[n] — kill[n])
in[nl] = rwn O pred[n’] OUt[n]

M= Starting condition:
in[n] is set of all nodes
in[start]= &

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 6

Dataflow analysis
« Propagates information about program through
flowgraph. Dataflow values make up space L
Solution: in[n], out[n]OL for every node n
 Live variable analysis: set of live variables
« Available expressions: set of available exprs

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 7

Dataflow analysis framework

Dataflow analysis characterized by:
1. Space of values L
2. Flow function F, for every node n
out[n] = F,(in[n])

FoiloL
Fa(l)
“If I O L is true before executing node n,
F.(l) is true afterward”
All analyses so far: F, (1) = gen[n] U (I —kill[n])
Live vars: F,(I) = use[n] U (I — def [n])
(gen=use, kill=def)
Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 8

Combining operator
1. Space of values L
2. Flow function F, for every node n
3. Combining operator 1

“If we know either |, or I, holds | |
on entry to n, we know at 1 2
most I, M 1,”
. LI,
m[n] = I_ln’Dpred[n] OUt[n’]

live vars: M=U avail exprs: M=n

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 9

Iterative analysis
4. maximum information TOL

for all n, in[n] = out[n] = T~
repeat until no change
for all n
in[n] = |_ln’ 0 pred[n] OUt[n,]
out[n] = F,(in[n])
end
end

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 10

Questions

Will iterative analysis
— produce a solution when it terminates?
— produce the best solution possible?
— terminate?

» Depends on properties of L, F,,, '

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 1

L as partial order
« Best solution has as much information as
possible — allows most optimization
—Live variables: smallest possible set
—Available expressions: largest possible set

» Some dataflow values contain more
information: |, = |, if |, has at least as
much information as |,

e Livevariables: I, =1, < [1,
 Available expressions: I, =1, < I, [,

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 12

Partial orders

e L is a partial order defined by
ordering relation =

e Some elements are incomparable
» Properties of a partial order

XE X (reflexive)
XxEylyEz => xEz (transitive)
XEYUYyEX = x=y (anti-symmetry)

e Examples: integers ordered by <, types ordered
by <:, sets ordered by O or .

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 13

Example: subsets of {a,b,c}

T ={ab,c} 3" o
o | mg x

. \ cC= D

height: 3 {C } FI -n

{a,b} u=0

AN
{b}
N /{a}

{3=1 Hasse diagram

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 14

Greatest lower bound

« Combining operator I, 1 I, gives element | such
thatlcl, 11,
« lisalower bound for I, I, (consistent with both)

« Want greatest such element (most info):
greatest lower bound (GLB)

Partial order with GLB/meet (1) and LUB/join
(L) is a lattice

e With only GLB, a lower semilattice

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 15

Meet-over-paths solution
« Consider traversal of flowgraph visiting
nodesa, b, c, .., n
» Assume l,is initial information
« Knowable information is
Fa((Fe(Fy (Fa (1))))
 Best possible solution is | such that
= R (Fe(Fy (Fa (1))
for all paths a, b, c, ..., n
« MOP (meet-over-paths) soln:
M all paths p Fpl(sz(Fps(---)))

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 16

Data-flow equations
« Algorithm repeatedly recomputes each out[n] as

Fn(M n’ O pred[n] OUt[nl])
* LetXx,...x, be out[1]...out[n]. Algorithm:

Xi = Fi(T} 5 preariy X))

Solution is pointin L": X = (xy,...X,)

Total set of equations is X = F(X) where
FOX) = (Fy (T 5 preapy %) Fo(T T 0 predrzy X9)» -+
« Any solution to constraints is fixed point of F

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 17

Fixed points
* Iterative analysis: initialize all x; with top
of lattice (X, = (T, T, T,...)), apply F(X)
until fixed point is reached:
Fk(xo) = Fk+1(xo)
» FX(X,) is a fixed point of F: a value that F
maps to itself

« Wanted: maximal fixed point

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 18

Monotonicity

« Flow functions map lattice values to other
lattice values; must be monotonic
« Monotonicity:
Lel, = F(1) = K1)
“If you have more information entering a node,
you have at least as much leaving”

« Example: reaching definitions. Lattice is all sets
of defining nodes ordered by subset relation:

F,(x) = gen[n] U (x - kill[n])

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 19

Termination

* First step either lowers some x; or terminates

 Second step sees same X; as first step (T), or
possibly lower: F(X;,) £ X,

» Monotonicity I, =1, = F(I;) £ F(l,)

= output of second step F2(X,) is lower than first
step (or it terminates): F2(X,) £ F1(Xy)

« Induction: each iteration moves at least one
node lower in lattice: F*1(X,) = Fi (X;)

« # algorithm steps to fixed point is at most height
of lattice H times number of nodes n: k = O(nH)

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 20

Solution quality
« MORP is best possible solution:
I_I all paths p Fpl(sz(FpS(---)))
» Does iterative analysis
Xi = Fi(l_lj Opredri] %)
produce the MOP solution?

* Yes, if flow functions distribute over the meet
operator:

M1 Fa() = Fo (M%)
< Not all analyses give MOP solution!

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 21

Reaching definitions

< L isall sets of defining nodes in call flow graph.
Maximum information means smallest possible
lists of reaching definitions, so:

e Top (T) is the empty set { }, meet (M) is set
union (V)
X, = out[n]
F.(x) = gen[n] O (x — kill[n])

in[n] = Un' O prev[n] OLIt[I’]']
out[n] =gen[n] O (in[n] - kill[n])

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 22

Xi = Fi(M; gpredrip X)) &

Monotonic?

F.(x) =gen[n] O (x—kill[n])
X, M X, =X O X,
XEY « xOy

¢ Is F,(x) monotonic?

F.(x) = gen[n] O (x —kill[n])

Fa(xOy)=gen[n] O ((xOy)—kill[n]) =
gen[n] O (x—Kill[n]) O (y — kill[n]) =
Fa() O (y —kill[n])

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 23

MOP?

F.(x) =gen[n] O (x — kill[n])
Xq M Xy =X, O Xy
» Does F,(x) distribute over 1 ?
Faxmy) =Fa(x0y)
=gen[n] O ((x Oy) —kill[n])
= (gen[n] O (x — kill[n]))
0 (gen[n] O (y — kill[n]))
=Fa() O Fa(y) =Fa(x) 1 Fa(y)
O Iterative analysis always terminates, finds the
best possible (meet-over-paths) solution to
reaching definitions

Lecture 28 CS 412/413 Spring '01 -- Andrew Myers 24

Other analyses
* Live variables
F,(1) =use[n] U (I —def [n])
n=u
« Available expressions
F.(I) = gen[n] U (1 —kill[n])
n=n
e Computes MOP solutions?

Lecture 28 CS 412/413 Spring ‘01 -- Andrew Myers 25

Summary
« Analyses for standard optimizations fit
into dataflow analysis framework

« Iterative analysis finds solution if flow
function monotonic in =, combining
function 1 defines lower semilattice

» Solution is MOP if distribution condition
[, F(x;) = F(['1; %) holds

Lecture 28 CS 412/413 Spring ‘01 -- Andrew Myers 26

