Introduction to Compilers

Andrew Myers
Cornell University

Lecture 26: Register Allocation
4 Apr o1

Administration

« Programming Assignment 4 due now

« Programming Assignment 5 available
online

Tota* language definition online

Prelim 2 Tuesday, April 17, 7:30-9:30

Lecture 26 CS 412/413 Spring '01 - Andrew Myers 2

Review

+ Want to replace all variables (including
temporaries) with some fixed set of
registers if possible

« First: need to know which variables are
live after each instruction

« Two simultaneously live variables cannot
be allocated to same register

Lecture 26 CS 412/413 Spring '01 - Andrew Myers

Register allocation

« For every node n in CFG now have out[n] :
which variables (temporaries) are live on

exit from node. [tﬁ‘]

« If two variables are in same live set, can’t
be allocated to the same register — they
interfere with each other

« How do we assign registers to variables?

Lecture 26 CS 412/413 Spring '01 - Andrew Myers 4

Inference Graph

+ Nodes of graph: variables boaag @

« Edges connect all C-b'b; 2’2
variables that interfere b=c+1; a’b
with each other return b*a;”’

« Register assignment is graph coloring

[Jeax o
D ebx o 0

Lecture 26 CS 412/413 Spring '01 - Andrew Myers

Graph Coloring

» Questions:

— Can we efficiently find a coloring of the graph
whenever possible?

— Can we efficiently find the optimum coloring
of the graph?

—How can we choose registers to avoid mov
instructions?

—What do we do when there aren’t enough
colors (registers) to color the graph?

Lecture 26 CS 412/413 Spring '01 - Andrew Myers 6

Coloring a Graph
« Kempe’s algorithm [1879] for finding a K-
coloring of a graph: (Assume K=3)

« Step 1: find some node with at most K-1
edges and cut it out of graph (simplify)

Lecture 26 CS 412/413 Spring '01 - Andrew Myers 7

Kempe’s Algorithm
+ Once coloring is found for simplified graph,
selected node can be colored using free color

« Step 2: simplify until graph contain no nodes,
unwind adding nodes back & assigning colors

Lecture 26 CS 412/413 Spring '01 - Andrew Myers 8

Failure of heuristic

« If graph cannot be colored, it will reduce to a
graph in which every node has at least K
neighbors

« May happen even if graph is colorable in K!

+ Finding K-coloring is NP-hard problem
(requires search)

Lecture 26 CS 412/413 Spring '01 - Andrew Myers 9

Spilling
+ Once all nodes have K or more neighbors, pick a
node and mark it for spilling (storage on
stack). Remove it from graph, continue as before
« Try to pick node not used much, not in inner
loop

Lecture 26

Optimistic Coloring
« Spilled node may be K-colorable; when assigning colors,
try to color it and only spill if necessary.

« If not colorable, record this node as one to be spilled,
assign it a stack location and keep coloring

Lecture 26 CS 412/413 Spring '01 - Andrew Myers 11

Accessing spilled variables

+ Need to generate additional instructions
to get spilled variables out of stack and
back in again

« Naive approach: always keep extra
registers handy for shuttling data in and
out. Problem: uses up 3 registers!

« Better approach: rewrite code introducing
a new temporary, rerun liveness analysis
and register allocation

Lecture 26 CS 412/413 Spring '01 - Andrew Myers 12

Rewriting code
add t1, t2

« Suppose that t2 is selected for spilling and
assigned to stack location [ebp-24]

« Invent new variable t35 for just this
instruction, rewrite:

mov t35, [ebp - 24]

add t1, t35

» Advantage: t35 doesn’t interfere with as
much as t2 did. Now rerun algorithm;
fewer or no variables will spill.

Lecture 26 CS 412/413 Spring '01 - Andrew Myers 13

Precolored nodes

+ Some variables are pre-assigned to
registers

» mul instruction has
use(n) = eax, def (n) = { eax, edx }

« call instruction Kkills caller-save regs:
def (n) = { eax, ecx, edx }

« To properly allocate registers, treat these
register uses as special temporary
variables and enter into interference graph
as precolored nodes

Lecture 26 CS 412/413 Spring '01 - Andrew Myers 14

Simplifying graph with
precolored nodes

+ Can’t simplify graph by removing a pre-
colored node

+ Precolored nodes: starting point of
coloring process

« Once simplified graph is all colored
nodes, add other nodes back in and
color them

Lecture 26 CS 412/413 Spring '01 - Andrew Myers 15

Optimizing mov instructions
+ Code generation produces a lot of extra
mov instructions
mov t5, t9
« If we can assign t5 and t9 to same register,
we can get rid of the mov

« Idea: if t5 and t9 are not connected in
inference graph, coalesce them into a
single variable. mov will be redundant.

Coalescing
+ Problem: coalescing two nodes can make the
graph uncolorable

 High-degree nodes can make graph harder to
color, even impossible

« Avoid creation of high-degree (>K) nodes
(conservative coalescing)

e

Le 5 CS 412/413 Spring 'c 17

Simplification + Coalescing

« Start by simplifying as much as possible without
removing nodes that are either the source or
destination of a mov (move-related nodes)

+ Coalesce some pair of move-related nodes as
long as low-degree node results; delete
corresponding mov instruction(s)

« If can neither simplify nor coalesce, take a move-
related pair and freeze the mov instruction, do
not consider nodes move-related

Lecture 26

High-level algorithm

Simplify, coalesce,

and freeze

!
Spill node if
necessary
!
Color graph
optimistically

Rewrite code

if necessary
¥

CS 412/413 Spring '01 — Andrew Myers

19

Summary

« Register allocation pseudo-code in Appel,
Chapter 11

« Now have seen all the machinery needed
to produce acceptable code

« Still not up to level of reasonably good
optimizing compilers

» Next few lectures: optimizations, analyses
allowing performance to approach or
surpass assembly-coded programs

Lecture 26 CS 412/413 Spring '01 - Andrew Myers 20

