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Optimization
« This course covers the most valuable and

straightforward optimizations — much
more to learn!

« Muchnick (optional text) has 10 chapters
of optimization techniques
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Goal of optimization

+ Help programmers
— clean, modular, high-level source code
— compile to assembly-code performance
» Optimizations are code transformations

—must be safe; can’t change meaning of
program

« Different kinds of optimization:
— space optimization: reduce memory use
—time optimization: reduce execution time

Lecture 24 CS 412/413 Spring '01 - Andrew Myers

Where to optimize?

« Usual goal: improve time performance

« Problem: many optimizations trade off space
versus time

« Example: loop unrolling

— Increasing code space slows program down a little,
speeds up one loop

— Frequently executed code with long loops: space/time
tradeoff is generally a win

— Infrequently executed code: may want to optimize
code space at expense of time

« Complex optimizations may never pay off!
« Want to optimize program hot spots
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Safety

« Opportunity for loop-invariant code motion:
while (b) {
z=y/x; // x, y not assigned in loop

3
 Hoist invariant code out of loop:
z=y/x;
while (b) { Safe?
3 Faster?

+ code transformation
« safety of transformation
« performance improvement
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Writing fast programs in practice

Pick the right algorithms and data
structures: reduce operations, memory
usage, indirections

« Turn on optimization and profile to
figure out program hot spots

Evaluate whether design works; if so...

« Tweak source code until optimizer does
“the right thing” to machine code
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Structure of an optimization

« Optimization is a code transformation

« Applied at some stage of compiler (HIR,
MIR, LIR)

« In general requires some analysis:

—safety analysis to determine where
transformation does not change meaning (e.g.
live variable analysis)

— cost analysis to determine where it ought to
speed up code (e.g. which variable to spill)
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When to apply optimization

AST Inlining
Specialization
IR Constant folding
Constant propagation
propag
Value numbering
Canonical Dead ?ode ?limination ]
Loop-invariant code motion
IR TP
Common sub-expression elimination
Strength reduction
Abstract Constant fok.iin_g & propa_gati_t)n
Assembly Braljnch predlctl_on/optlmlzatlon
Register allocation
Loop unrolling
Assembly Cache optimization
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Why do we need optimization

« Programmers don’t always write optimal code —
can recognize ways to improve code (e.g. avoid
recomputing same expression)

High-level language may make avoiding
redundant computation inconvenient or
impossible

a[i][jl=ali][j]+1
Architectural independence
« Modern architectures assume optimization — too
hard to optimize by hand
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Register allocation

Goal: convert abstract assembly (infinite no. of registers)
into real assembly (6 registers)

mv tl1, t2
add t1, [bp-4] nov ax, bx
mov t3, [bp-8] add ax, [bp-4]
mov t4, t3 q nov bx, [bp-8]
cnp t1, t4

cnp ax, bx
Need to reuse registers aggressively (e.g., bx)
Want to coalesce registers (t3, t4) to eliminate nov’s
May be impossible without spilling to stack
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Constant folding
« Idea: if operands are known at compile
time, evaluate at compile time.
intx=(2+3)%Y; = intx=>5%Y;
b & false = false

» Performed at every stage of compilation

— Constant expressions created by translation
or optimization

a[2] = MEM(MEM(a) + 2*4)
— MEM(MEM(a) + 8)
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Constant folding conditionals
if (true) S=S
if (false) S = ;
if (true)SelseS’ =S
if (false) Selse S’ = &’
while (false) S = ;

if(2>3)S>;
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Algebraic simplification

« More general form of constant folding: take

advantage of usual simplification rules

a*1=>a a*0=>0

a+0=>a

b | false = b b & true=b

(@+1)+2=a+(1+2)=>a+3 reassociation

a*4=ashl2

a*7=(ashl3)—a strength reduction

a / 32767 = a shr 15 + a shr 30

identities

» Must be careful with floating point!
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Unreachable code elimination

« Basic blocks not contained by any trace
leading from starting basic block are
unreachable and can be eliminated

+ Performed at canonical IR or assembly
code levels

« Improves cache, TLB performance
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Inlining
+ Replace a call to a function with the body
of the function itself with args:
g(x: int):int = 1+ f(x);
f(a: int):int = ( b:int=1; n:int = 0;
while (n<a) (b =2*b); b)
= g(x:int):int = 1 + (a:int = x; ( b:int=1; n:int = 0;
while (n<a) (b =2*b); b))
« May need to rename variables to avoid name
capture—consider if f refers to a global var x
+ Can inline methods, but more difficult
« Best done on HIR
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Specialization

« Idea: create specialized versions of functions (or
methods) that are called from different places
w/ different args

class A implements | { m() {...} }

class B implements | { m( ) {...} }

f(x: ) {x.m();} // don’t know which m
a = new A(); f(a) // know A.m

b = new B(); f(b) // know B.m

» Can inline methods when implementation is
known

« Impl known if only one implementing class
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Constant propagation

« If value of variable is known to be a
constant, replace use of variable with
constant

« Value of variable must be propagated
forward from point of assignment

int x = 5;

inty =x*2;

int z = a[y]; // = MEM(MEM(a) + y*4)
« For full effect, interleave w/ constant

folding
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Dead code elimination

If side-effect of a statement can never be
observed, can eliminate the statement

X = y'y; // dead!

// x unused

X = Z*z; X = Z*z;

Variable is dead if never used after defn.

inti;

while (m<n) ( m++; i =i+1) q while (m<n) (m++)
Other optimizations create

dead statements, variables
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Copy propagation
+ Given assignment X =y, replace
subsequent uses of x with y
« May make x a dead variable, result in dead
code
» Need to determine where copies of y
propagate to

Redundancy Elimination
« Common Subexpression Elimination folds
redundant computations together
a[i]=a[i]+1
[[a]+i*4] = [[a]+*4] + 1
= t1 = [a] +i*4; [t1] = [t1]+1
» Need to determine that expression always

has same value in both places
b[j]=a[i]+1; c[k]=a[i] = t1=a[i]; b[j]=t1+1; c[k]=t1 ?
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X=Yy K=y

if (x>1) if (y>1){

x=x*f(x-1) x=y*f(y-1)
Loops

 Program hot spots are usually loops
(exceptions: OS kernels, compilers)

» Most execution time in most programs is
spent in loops: 90/10 is typical

+ Loop optimizations are important, effective,
and numerous
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Loop-invariant code motion

« Another form of redundancy elimination

If result of a statement or expression does not

change during loop, and it has no externally-

visible side-effect (!), can hoist its computation

before loop

« Often useful for array element addressing
computations — invariant code not visible at
source level

 Requires analysis to identify loop-invariant
expressions
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Example

for (i = 0; i < a.length; i++) {
// a not assigned in loop

Yo m

hoisted loop-invariant expression

for (1=0;1<t1;i++) {

:
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Strength reduction

» Replaces expensive operations (multiplies,
divides) by cheap ones (adds, subtracts) by
creating dependent induction variable

for (inti=0;i<n;i++) {

ali*3] = 1;
} intj =0;
for (inti=0;1i<n;i++){
a[jl=1;3=73+3;
}
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Loop unrolling

 Branches are expensive; unroll loop to
avoid them

for (i =0; i< n;i++) {S}
&

for (i=0;i<n-3;i+=4) {S; S; S; S;}
for ( ;i<n; i) S;

 Gets rid of 34 of conditional branches!

« Space-time tradeoff: not a good idea for
large S or small n.
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Summary

« Many useful optimizations that can
transform code to make it faster

« Whole is greater than sum of parts:
optimizations should be applied together,
sometimes more than once, at different
levels

+ Problem: when are optimizations are safe?
=Dataflow analysis

=Control flow analysis

=Alias analysis
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