£

CS 412
Introduction to Compilers

Andrew Myers
Cornell University

Lecture 24: Introduction to Optimization
30 Mar o1

Administration

« Programming Assignment 4
due Wednesday, April 4

+ Optional reading: Muchnick 11

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 2

Optimization
« This course covers the most valuable and

straightforward optimizations — much
more to learn!

« Muchnick (optional text) has 10 chapters
of optimization techniques

Lecture 24 CS 412/413 Spring '01 - Andrew Myers

How fast can you go?

10000 — .
2020 source code interpreters
2015 1000 — tokenized program interpreters (BASIC, Tcl)
AST interpreters (Perl 4)
100 threaded interpreters
2010 bytecode interpreters (Java, Perl 5) P
10 call-threaded interpreters (FORTH)
2005
2002 1 simple code generation (PA3, JIT)
2001 —T register allocation paive assembly code
e‘ggpaer%%s]sng% 1P);J"'godeglobal optimization
0.1 —

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 4

Goal of optimization

+ Help programmers
— clean, modular, high-level source code
— compile to assembly-code performance
» Optimizations are code transformations

—must be safe; can’t change meaning of
program

« Different kinds of optimization:
— space optimization: reduce memory use
—time optimization: reduce execution time

Lecture 24 CS 412/413 Spring '01 - Andrew Myers

Where to optimize?

« Usual goal: improve time performance

« Problem: many optimizations trade off space
versus time

« Example: loop unrolling

— Increasing code space slows program down a little,
speeds up one loop

— Frequently executed code with long loops: space/time
tradeoff is generally a win

— Infrequently executed code: may want to optimize
code space at expense of time

« Complex optimizations may never pay off!
« Want to optimize program hot spots

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 6

Safety

« Opportunity for loop-invariant code motion:
while (b) {
z=y/x; // x, y not assigned in loop

3
 Hoist invariant code out of loop:
z=y/x;
while (b) { Safe?
3 Faster?

+ code transformation
« safety of transformation
« performance improvement

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 7

Writing fast programs in practice

Pick the right algorithms and data
structures: reduce operations, memory
usage, indirections

« Turn on optimization and profile to
figure out program hot spots

Evaluate whether design works; if so...

« Tweak source code until optimizer does
“the right thing” to machine code

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 8

Structure of an optimization

« Optimization is a code transformation

« Applied at some stage of compiler (HIR,
MIR, LIR)

« In general requires some analysis:

—safety analysis to determine where
transformation does not change meaning (e.g.
live variable analysis)

— cost analysis to determine where it ought to
speed up code (e.g. which variable to spill)

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 9

When to apply optimization

AST Inlining
Specialization
IR Constant folding
Constant propagation
propag
Value numbering
Canonical Dead ?ode ?limination]
Loop-invariant code motion
IR TP
Common sub-expression elimination
Strength reduction
Abstract Constant fok.iin_g & propa_gati_t)n
Assembly Braljnch predlctl_on/optlmlzatlon
Register allocation
Loop unrolling
Assembly Cache optimization

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 10

Why do we need optimization

« Programmers don’t always write optimal code —
can recognize ways to improve code (e.g. avoid
recomputing same expression)

High-level language may make avoiding
redundant computation inconvenient or
impossible

a[i][jl=ali][j]+1
Architectural independence
« Modern architectures assume optimization — too
hard to optimize by hand

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 11

Register allocation

Goal: convert abstract assembly (infinite no. of registers)
into real assembly (6 registers)

mv tl1, t2
add t1, [bp-4] nov ax, bx
mov t3, [bp-8] add ax, [bp-4]
mov t4, t3 q nov bx, [bp-8]
cnp t1, t4

cnp ax, bx
Need to reuse registers aggressively (e.g., bx)
Want to coalesce registers (t3, t4) to eliminate nov’s
May be impossible without spilling to stack

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 12

Constant folding
« Idea: if operands are known at compile
time, evaluate at compile time.
intx=(2+3)%Y; = intx=>5%Y;
b & false = false

» Performed at every stage of compilation

— Constant expressions created by translation
or optimization

a[2] = MEM(MEM(a) + 2*4)
— MEM(MEM(a) + 8)

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 13

Constant folding conditionals
if (true) S=S
if (false) S = ;
if (true)SelseS’ =S
if (false) Selse S’ = &’
while (false) S = ;

if(2>3)S>;

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 14

Algebraic simplification

« More general form of constant folding: take

advantage of usual simplification rules

a*1=>a a*0=>0

a+0=>a

b | false = b b & true=b

(@+1)+2=a+(1+2)=>a+3 reassociation

a*4=ashl2

a*7=(ashl3)—a strength reduction

a / 32767 = a shr 15 + a shr 30

identities

» Must be careful with floating point!

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 15

Unreachable code elimination

« Basic blocks not contained by any trace
leading from starting basic block are
unreachable and can be eliminated

+ Performed at canonical IR or assembly
code levels

« Improves cache, TLB performance

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 16

Inlining
+ Replace a call to a function with the body
of the function itself with args:
g(x: int):int = 1+ f(x);
f(a: int):int = (b:int=1; n:int = 0;
while (n<a) (b =2*b); b)
= g(x:int):int = 1 + (a:int = x; (b:int=1; n:int = 0;
while (n<a) (b =2*b); b))
« May need to rename variables to avoid name
capture—consider if f refers to a global var x
+ Can inline methods, but more difficult
« Best done on HIR

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 17

Specialization

« Idea: create specialized versions of functions (or
methods) that are called from different places
w/ different args

class A implements | { m() {...} }

class B implements | { m() {...} }

f(x:) {x.m();} // don’t know which m
a = new A(); f(a) // know A.m

b = new B(); f(b) // know B.m

» Can inline methods when implementation is
known

« Impl known if only one implementing class

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 18

Constant propagation

« If value of variable is known to be a
constant, replace use of variable with
constant

« Value of variable must be propagated
forward from point of assignment

int x = 5;

inty =x*2;

int z = a[y]; // = MEM(MEM(a) + y*4)
« For full effect, interleave w/ constant

folding

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 19

Dead code elimination

If side-effect of a statement can never be
observed, can eliminate the statement

X = y'y; // dead!

// x unused

X = Z*z; X = Z*z;

Variable is dead if never used after defn.

inti;

while (m<n) (m++; i =i+1) q while (m<n) (m++)
Other optimizations create

dead statements, variables

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 20

Copy propagation
+ Given assignment X =y, replace
subsequent uses of x with y
« May make x a dead variable, result in dead
code
» Need to determine where copies of y
propagate to

Redundancy Elimination
« Common Subexpression Elimination folds
redundant computations together
a[i]=a[i]+1
[[a]+i*4] = [[a]+*4] + 1
= t1 = [a] +i*4; [t1] = [t1]+1
» Need to determine that expression always

has same value in both places
b[j]=a[i]+1; c[k]=a[i] = t1=a[i]; b[j]=t1+1; c[k]=t1 ?

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 20

X=Yy K=y

if (x>1) if (y>1){

x=x*f(x-1) x=y*f(y-1)
Loops

 Program hot spots are usually loops
(exceptions: OS kernels, compilers)

» Most execution time in most programs is
spent in loops: 90/10 is typical

+ Loop optimizations are important, effective,
and numerous

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 23

Loop-invariant code motion

« Another form of redundancy elimination

If result of a statement or expression does not

change during loop, and it has no externally-

visible side-effect (!), can hoist its computation

before loop

« Often useful for array element addressing
computations — invariant code not visible at
source level

 Requires analysis to identify loop-invariant
expressions

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 24

Example

for (i = 0; i < a.length; i++) {
// a not assigned in loop

Yo m

hoisted loop-invariant expression

for (1=0;1<t1;i++) {

:

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 25

Strength reduction

» Replaces expensive operations (multiplies,
divides) by cheap ones (adds, subtracts) by
creating dependent induction variable

for (inti=0;i<n;i++) {

ali*3] = 1;
} intj =0;
for (inti=0;1i<n;i++){
a[jl=1;3=73+3;
}
Lecture 24 CS 412/413 Spring '01 -- Andrew Myers 26

Loop unrolling

 Branches are expensive; unroll loop to
avoid them

for (i =0; i< n;i++) {S}
&

for (i=0;i<n-3;i+=4) {S; S; S; S;}
for (;i<n; i) S;

 Gets rid of 34 of conditional branches!

« Space-time tradeoff: not a good idea for
large S or small n.

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 27

Summary

« Many useful optimizations that can
transform code to make it faster

« Whole is greater than sum of parts:
optimizations should be applied together,
sometimes more than once, at different
levels

+ Problem: when are optimizations are safe?
=Dataflow analysis

=Control flow analysis

=Alias analysis

Lecture 24 CS 412/413 Spring '01 - Andrew Myers 28

