
1

CS 412
Introduction to Compilers

Andrew Myers

Cornell University

Lecture 10: Types and type checking

14 Feb 01

CS 412/413 Spring '01 2

Administration

• HW2 due now

CS 412/413 Spring '01 3

Review

• Semantic analysis performed on
representation of program as AST

• Implemented as a recursive traversal of
abstract syntax tree

CS 412/413 Spring '01 4

Semantic Analysis
• Catching errors in a syntactically valid program

– Identifier errors: unknown identifier, duplicate
identifier, used before declaration

– Flow control errors: unreachable statements, invalid
goto/break/continue statements

– Expressions have proper type for using context

• This lecture:
– What kinds of checks are done (particularly type

chks)

– How to implement types

– Not covered in Appel or Dragon Book

CS 412/413 Spring '01 5

Type checking
• Bulk of semantic checking
• Operators (e.g. +, !, []) must receive

operands of the proper type
• Functions must be called w/ right number

& type of arguments
• Return statements must agree w/ return

type
• In assignments, assigned value must be

compatible with type of variable on LHS.
• Class members accessed appropriately

CS 412/413 Spring '01 6

Static vs. Strong Typing
• Many languages statically typed (e.g. C, Java, but not

Scheme, Dylan): expressions, variables have a static type

• Static type is a predicate on values might occur at run
time. int x; in Java means x ∈ [-231, 231). Types ≈
efficiently decidable predicates

• Strongly typed language: operations unsupported by a
value never performed at run time.

• In strongly typed language with sound static type
system: run-time values of expressions, variables
characterized conservatively by static type

2

CS 412/413 Spring '01 7

Type safety

Strongly typed Not strongly typed

Statically typed

Not statically typed

Java

ML

Modula-3
Iota+

Pascal C

Scheme
PostScript

Smalltalk
SELF Dylan

CLOS

FORTH
assembly code

C++

Iota

CS 412/413 Spring '01 8

Why Static Typing?
• Compiler can reason more effectively
• Allows more efficient code: don’t have to

check for unsupported operations
• Allows error detection by compiler
• But:

– requires at least some type declarations
– type decls often can be inferred (ML)

CS 412/413 Spring '01 9

Dynamic checks
• Even statically-typed languages have some

dynamic checking
– Array index out of bounds

– null in Java, null pointers in C

– Inter-module type checking in Java

• Sometimes can be eliminated through
static analysis
– harder than type checking: undecidable

→ theorem proving

→ can’t always eliminate these checks
CS 412/413 Spring '01 10

Type Systems
• Type is predicate on values

• Arbitrary predicates: type checking
intractable (theorem proving)

• Languages have type systems that define
what types can be expressed and what
static types expressions have

• Types described in program by type
expressions: int, string, array[int], Object,
InputStream[], Vector<int>

CS 412/413 Spring '01 11

Example: Iota type system
• Language type systems have primitive

types (also: basic types, base types,
ground types)

• Iota: int, string, bool
• Also have type constructors that operate

on types to produce other types

• Iota: for any type T, array[T] is a type.
Java: T [] is a type for any T

CS 412/413 Spring '01 12

Type expressions: aliases
• Some languages (not Java) allow type

aliases (type definitions, equates)
– C: typedef int int_array[];
– Modula-3: type int_array = array of int;

• int_array is type expression denoting same
type as int [] -- not a type constructor

• Different type expressions may denote the
same type

3

CS 412/413 Spring '01 13

Type Expressions: Arrays
• Different languages have various kinds of

array types

• w/o bounds: array(T)
– C, Java: T [], Modula-3: array of T

• size: array(T, L) (may be indexed 0..L-1)
– C: T[L], Modula-3: array[L] of T

• upper & lower bounds: array(T,L,U)
– Pascal, Modula-3: indexed L..U

• Multi-dimensional arrays (FORTRAN)

CS 412/413 Spring '01 14

Records/Structures

• More complex type constructor
• Has form {id1: T1, id2: T2, …} for some

ids and types Ti

• Supports access operations on each
field, with corresponding type

• C: struct { int a; float b; } corresponds to
type {a: int, b: float}

• Class types (e.g. Java) extension of
record types

CS 412/413 Spring '01 15

Functions
• Some languages have first-class function types

(C, ML, Modula-3, Pascal, not Java)
• Function value can be invoked with some

argument expressions with types Ti, returns
return type Tr.

• Type: T1×T2 × … × Tn→Tr

• C: int f(float x, float y)
– f: float × float→ int

• Function types useful for describing methods, as
in Java, even though not values
– extensions needed for exceptions.

CS 412/413 Spring '01 16

Representing types
• Type-checking routine returned a Type object

– what is it?
Type typeCheck(SymTab s)

Option 1: make Type an AST node
abstract class Type extends Node

{ abstract boolean equals(Type t); }
class IdType extends Type { String name; }
class ArrayType extends Type { Type elemType;…}
class FunctionType extends Type { … }

• Type equality requires tree comparisons
• Must look in symbol table to interpret IdType; must

make sure the right symbol table is available!

CS 412/413 Spring '01 17

Creating Type AST nodes
non terminal Type type_expr

or Type parseType();

type ::= ID:id
{: RESULT = new IdType(id); :}

| ARRAY LBRACKET type:t RBRACKET
{: RESULT = new ArrayType(t); :}

CS 412/413 Spring '01 18

Processing type declarations

• Type aliases, class definitions must be added
to symbol table (usu. top-level) during
semantic analysis

class_defn ::= CLASS ID:id { decls:d }
• AST for class_defn should be checked once

for validity – mutual references can require
multiple passes over AST to collect legal
names

• Sem. analysis binds (in ST) class names to
objects representing checked type definitions:

class IotaClass { String name; SymTab decls; … }

4

CS 412/413 Spring '01 19

Another approach: type objects

• Option 2: resolve AST trees representing
types to unique objects for each distinct type
class BaseType extends Type

{ String name; }
static BaseType Int, Char, Float, …
class IotaClass extends Type { … }
class ArrayType extends Type { Type elemType; }

• array[int] resolved to same type object everywhere
• Semantic analysis resolves all type expressions to

type objects; symbol table binds name to type object
• Faster type equality: can use ==, mostly
• Type meaning is independent of symbol table

CS 412/413 Spring '01 20

Static Semantics
• Can describe the types used in a program.

How to describe type checking?

• Formal description: static semantics for
the programming language

• Static semantics defines types for all legal
language ASTs

• We will write ordinary language syntax to
mean the corresponding AST

