
1

CS 412/413

Introduction to

Compilers and Translators
Andrew Myers

Cornell University

Lecture 38: Compilation strategies
3 May 00

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 2

Administration

• Design reports due Friday

• Current demo schedule on web page
– send mail with preferred times if you

haven’t signed up yet

– keep on eye on the schedule!

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 3

Why build a compiler?

• You can design your own programming
language

• Domain-specific languages can be
designed for problems being solved
– Code is shorter, easier to maintain:

language has the right concepts baked in
– Faster: can use optimize using special

knowledge of language semantics

• This lecture: how to make it a little
easier…

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 4

Compilers

Scanning

Parsing

Intermediate Code Generation

MIR Optimization

Code generation

LIR optimization

Type checking

Linking & Loading

Compiler

bytecode
compiler

JIT
compiler

source-to-
source

translator

interpreter

back end

front end

Java

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 5

Architectural independence

• Source-to-source translator: compile from
source to another high-level language (e.g. C),
let other compiler deal with code gen, etc.

• Compile from source to an intermediate code
format for which a back end already exists
(ucode, RTF, LCC, ...)

• Compile from source to an executable
intermediate code format, interpret:
– abstract syntax tree
– bytecodes (stack or register machine)
– threaded code

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 6

Source-to-source translator

• Idea: choose well-supported high-level
language (e.g. C, C++, Java) as target

• Translate AST to high-level language
constructs instead of to IR, pass translated
code off to underlying compiler

• Advantage: easy, can leverage good
underlying compiler technology. Examples:
C++ (to C), PolyJ (to Java), Toba (JVM to C)

• Disadvantages: target language won’t support
all features, optimization harder in target
language, language may impose extra checks

2

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 7

Compiling to C

• C doesn’t impose extra checks, is reasonably
close to assembly, widely available (but can’t
support static exception tables

• Mismatch: no statements underneath
expressions; must translate to canonical form
in one step

• Translation of expression into C (or Java) is:
– sequence of statements to be executed
– expression to be evaluated afterward

E �e� = { s1;…; sn; } ; e’
S �s� = { s1;…; sn; }

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 8

Translation rules

• Translation still can be performed by
recursive traversal of AST

• Some Iota → C rules:
E � e � = s ; e’

E � id = e � = s ; id = e’

E � si �= si’ ; ei’ i∈1..n

E � (s1; …; sn) � = { s1’; …; sn’; } ; en’
block

assignment

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 9

Translating to Java

• Same problems as C, plus: Java is type-
safe (good in a HLL, not so good in an
intermediate language!)

• May need to use casting and instanceof
expressions in generated code
– dynamic type discrimination: slow

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 10

Back Ends

• Several standard intermediate code
formats exist with back ends for various
architectures—can reuse back ends
– p-code: very old stack machine format
– UCODE: old Stanford/MIPS stack machine

format
– Java bytecode: new stack machine format
– RTL: GNU gcc, etc.
– SUIF: Stanford format for optimization
– LCC: Lightweight C compiler

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 11

Intermediate code formats

• Quadruples
– compact, similar to machine code, good for

standard optimization techniques

• Stack machine
– E.g., Java bytecode format

– easy to generate code for

– hard to optimize directly

– can be converted back into quadruples

– used by some (sort of) high-level languages:
FORTH, PostScript, HP calculators

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 12

Stack machine format

• Code is a sequence of stack operations
(not necessarily the same stack as the
call stack)

push CONST : add CONST to the top of stack
pop : discard top of stack
store : in memory location specified by top of

stack store element just below.
load : replace top of stack with memory

location it points to
+, *, /, -, … : replace top two elems w/ result of

operation

3

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 13

Generating code

• Stack operations mostly don’t name
operands (implicit): can code in 1 byte

• Expression is translated to code that
leaves its value on the top of stack

• Translation of E1 + E2:
�E1 + E2� = �E1�; �E2�; +

• Translation of id = E :
� id = E � = � E �; push addr(id); store

• Bad code generation is easy

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 14

Compactness

• Values get “trapped” down low on stack
especially with subexpression elim.

• Often need instruction that re-pushes
element at known stack index on top

• Might as well have register operands!

• Result: not more compact than a
register-based format; extra copies of
data on stack too

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 15

Stack machine ���� quadruples

• At each point in code, keep track of
stack depth (if possible)

• Assign temporaries according to depth

• Replace stack operands with quadruples
using these temporaries

a b c

a + b*c

push a ; 0
push b ; 1
push c ; 2
* ; 1
+ ; 0

t0 = a
t1 = b
t2 = c
t1 = t1 * t2
t0 = t0 + t1

0 1 2

a b*c
a+b*c

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 16

Java compilation model
Java source code

javac sun.tools.javac.Main(o, s)

Java bytecode

bytecode verifier

Just-In-Time
(JIT) compiler

Java
interpreter

native code

stack
machine

instructions

type
annotations

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 17

Verification

• Java security depends on
– access only through public/protected methods
– hidden private variables
– unforgeable references to objects (capabilities)

• If Java program is not strongly typed, security
of machine can be compromised!

• Java bytecode verifier checks Java bytecode
to ensure strong typing: typed intermediate
language

• Java Virtual Machine interpreter runs verified
bytecode quickly, avoids run-time checks

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 18

JVM bytecode
• stack-machine intermediate code

– add, sub, mul, rem, div, … : arithmetic
– dup, swap, pop, … : stack ops

• also has local registers/temporaries
– load, store
– untyped, reused for different types

• built-in object operations
– invokevirtual, invokestatic, getfield, putfield, …
– types of methods, fields are declared

• control flow
– ifeq, goto, ifne, … : conditional branch

• How to show that code is type-safe?
(efficiently!)

4

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 19

Type inference
• Type-checking bytecode: need to know

– type of every stack entry
– type of every local at every instruction

• Not present in bytecode file: inferred
• Start from

– known argument, return types to method
– object calls inside method

• Use forward data-flow analysis to propagate
types to all bytecode instructions!

• Data-flow value is type of every stack entry,
type of every local

• Meet is point-wise join in type hierarchy
CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 20

Example

Data-flow value = (T1, T2, …), [0: T’0, 1: T’1, …]

swap

stack types local types

(T1, T2, …), [0: T’0, 1: T’1, …]

(T2, T1, …), [0: T’0, 1: T’1, …]

load i

(T1, T2, …), [0: T’0, …, i: T’i, …]

(T’i, T1,T2, …), [0: T’0, …, i: T’i, …]

(…), […, i: Ti, …] (…), […, i: T’i, …]

(…), […, i: Ti� T’i, …]
Object � int = ?

flow
functions

combining operator �

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 21

JIT compilers
• Particularly widely available back end(s) with

well-defined intermediate code (JVM
bytecode)

• Generate code by reconstructing registers
from stack machine as discussed

• Inferred types allow better code
• Compilation is done on-the-fly: generating

code quickly is essential → generated code
quality is usually low

• HotSpot: new Sun JIT. High-quality
optimization (esp. inlining and
specialization), but used sparingly

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 22

Interpreters

• “Why generate machine code at all?
Just run it. Processors are really fast”

• Options:
– token interpreters (parsing on the fly) --

reallly slow (>1000x)

– AST interpreters -- 300x

– threaded interpreters -- 20-50x

– bytecode interpreters -- 10-30x

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 23

AST interpreters

“Yet another recursive traversal”
• For every node type in AST, add method

Object evaluate(RunTimeContext r)
• Evaluate method is implemented recursively

Object PlusNode.evaluate(r) {
return left.evaluate(r).plus(right.evaluate(r)); }

• Variables, etc. looked up in r; some help from
AST yields big speed-ups (e.g. pre-computed
variable locations)

• Interpreter code broken into tiny methods w/
lots of method invocations: slow

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 24

Implementing bytecode interpreters

• Bytecode interpreter simulates a simple
architecture (either stack or register machine)

• Interpreter state:
– current code pointer
– current simulated function return stack
– current registers or stack & stack pointer

• Interpreter code is a big loop containing a
switch over kinds of bytecode instructions
– one big function: optimizer does good things
– Avoid: recursion on function calls

• Result: 10-30x slowdown if done right

5

CS 412/413 Spring '00 Lecture 38 -- Andrew Myers 25

Summary

• Building a new system for executing code
doesn’t require construction of a full compiler

• Cost-effective strategies: source-to-source
translation or translation to an existing
intermediate code format

• Material covered in this course still helps

• High performance: translate to C

• Portability, extensibility: translate to Java or
JVM (leverage existing back end/interpreter)

