
1

CS 412/413
Introduction to

Compilers and Translators
Andrew Myers

Cornell University

Lecture 37: Dynamic Types

1 May 00
CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 2

Static vs. dynamic typing

• Have looked mainly at compiling
statically-typed languages

• This lecture: how to handle
incomplete information about run-
time type

• Arises even in statically-typed OO
languages because only supertype
is known (e.g. casts and instanceof)

CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 3

Type safety

Strongly typed Not strongly typed

Statically typed

Not statically typed

Java

ML

Modula-3

Pascal C

Scheme
PostScript

Smalltalk
SELF
CLOS

FORTH
assembly code

C++

Iota
Iota+

CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 4

Dynamically typed languages

• Scheme, CLOS, Dylan, PostScript:
Variables do not have a declared type –
can contain any kind of value

• Operations can be invoked without
knowing type of value

• Strong typing: must check value to
make sure it has a type supporting the
operation

• Must be able to figure out the run-time
type of every value!

CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 5

Unsupported object operations
• Object operations=method invocations
• Need to check for unsupported methods
• Option 1: give every method unique index
• Option 2: Hash table implementation of DV

automatically handles unsupported methods
• Option 3: Use standard

DV but check method
identity

• Field accesses: not
a problem for this,
treat as methods
for other variables

class
DV

CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 6

Primitive types

x = 48463751374;
x = new Foo;

• If variables are untyped, how to know x
is actually an int (or not)?

• Must change representation of integers!
(booleans, characters, floats, etc.)
– Box everything into an object?
– Use two words per value?

2

CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 7

Tag bits

• Another approach: reserve 1-3 bits in
each word to identify primitive values
(handy for GC too)

• Advantage: variable in a single word

• Disadvantage: extra overhead, smaller
range of representable values, pointers

12 = 00001100 → 001100 00
‘\f’ = 00001100 → 001100 01
new Foo = 00110000 → 001100 11

CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 8

Tag bit tricks
• Integers: use zero bit pattern so

integer n represented by number 4n
– Adding two integers a + b: just add tagged

representation!

– Multiply: a * b → a*(b shr 2)

• Pointers: represent a pointer to an
object at address p by p’ = p+3 (don’t
need to be able to address every byte!)

[p+k] → [p’+k-3]

new Foo = 00110000 → 001100 11

CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 9

Dynamic type discrimination

• Even statically typed languages need to
find type of object at run time

class Number {
boolean equals(Object x) {

if (x instanceof Number) {
return equals((Number)x);

} else return false;
}

}
• How to implement dynamic type

discrimination: instanceof, dynamic cast?

CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 10

Using DV

• All objects of a class share same DV

• DV identifies which class it comes from

• Idea: implement instanceof as
comparison of DV pointer

• x instanceof C �
x.dv == C__DV

• Complete?

class
DV

CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 11

Hashing DV pointer
• Problem to solve: given DV pointer,

type T, determine if class(DV) ≤ T
• T may be a class or an interface;

consider class with DV2

• Use pre-initialized global hash table to
look up type relationships: Hash DV,
DV2 to look up either true or false

• Construct pseudo-DV’s for interfaces so
they can be entered in hash table too

• Can update table dynamically (for
caching or dynamic loading)

CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 12

Class indices

• If only single inheritance, can
implement instanceof as range check

• Traverse class hierarchy depth-first,
number classes

• All classes that are subclasses of C have
indices in a contiguous range

C4

C2

C1 C3

C6

C5 C7

3

CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 13

Class indices

• Class index is stored in the class DV
• x instanceof C
� x.dv.class ≤ C__index_max &&

x.dv.class ≥ C__index_min
� (x.dv.class — C__index_min) ≤u

(C__index_max — C__index_min)

• Limitation: can’t add new classes to
system without rewriting code

CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 14

Primitive types: subtyping?

• Java, Iota+: primitive types have no
subtype relation to any other type

x: object = 10 // NO
• Limits subtype polymorphism: routines

written in terms of object not
applicable to primitives (work-around: x =
new Integer(10))

• Can we allow int <: object?
• x: object declares x as untyped;

dynamically typed approaches work

CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 15

Subtyping for primitives

• Solution 1: objects.

• Solution 2: tagging.

• Solution 3: automatic boxing.
– Only works in statically-typed language

– Allow multiple representations of primitive
values: boxed and unboxed

– Primitives are represented in efficient way
when type is known; as objects when type
is unknown

CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 16

Automatic boxing
• Use static type to decide when to box

• Conversion from primitive to type object:
compiler boxes the primitive

Object x = 10 � x = new Integer(10);

• Cast from object to primitive: unbox if
cast succeeds

y: int = (int)x; �
if (x instanceof Integer) y = ((Integer)x).value;
else throw ClassCastError;

CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 17

Run-time type information
• Run-time representation of classes

discussed so far: dispatch vectors and
method code

• Other useful information: types of
fields, layout in memory, supertype
relationships

• Useful for: GC, persistence, dynamic
code generation (e.g., RPC stubs, Java
Beans), dynamic type discrimination

CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 18

Meta-objects

• How to store dynamic type
information? Idea (Smalltalk): use
ordinary objects—meta-objects

• For every class, introduce an object to
represent it

• Class object contains information about
class: methods, fields, list of supertypes

• Class DV contains pointer to class
object; can find any object’s class object

4

CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 19

Class Class

• If class objects are ordinary objects,
what is the class of a class object?
class Class {

Method methods[];
Field fields [];
Class superclasses[];
Type interfaces_implemented[];

}
• Set of methods supported by Class:

meta-object protocol (MOP)
CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 20

Infinite regression?

object of
class Foo

DV for
class Foo

class object
for Foo

DV for
Class

class
object

for Class
?

CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 21

Dynamic code generation
• All information (meta-objects)

compiler needs is in running application
– can use compiler in the application!

• Application can use compiler to
generate type-safe code on the fly
– from source code
– from partially compiled code (AST, abstract

assembly)

• Example: function plotting program
• Convenient if compiler is written in the

language it compiles (e.g., Java)
CS 412/413 Spring '00 Lecture 37 -- Andrew Myers 22

Escaping static limitations

Compiler techniques can be applied
to very dynamic systems as well as
to statically-typed languages
–untyped languages
–run-time type discrimination
–primitive values treated as objects
–meta-objects expose information

about type system as first-class values
–dynamic code generation

