
1

CS 412/413
Introduction to

Compilers and Translators
Andrew Myers

Cornell University

Lecture 36: Exceptions
28 April 00

CS 412/413 Spring '00 Lecture 36 -- Andrew Myers 2

Administration

• Design reports due next Friday

• Project demos May 11-12

CS 412/413 Spring '00 Lecture 36 -- Andrew Myers 3

Exceptions
• Simple model of a function or method:

takes in set of arguments, returns value
• Many languages also allow exceptions:

alternate return paths from a function
• null pointer, overflow, emptyStack,...
• Function either terminates normally or

with an exception
– total functions make robust software
– no encoding error conditions in result

• Several different exception models:
affects implementation efficiency

CS 412/413 Spring '00 Lecture 36 -- Andrew Myers 4

Generating exceptions

• Java, C++: statement throw E is
statement that terminates exceptionally
with exception E

• Exception propagates lexically within
current function to nearest enclosing
try..catch statement containing it

• If not caught within function,
propagates dynamically upward in call
chain.

• Tricky to implement efficiently

CS 412/413 Spring '00 Lecture 36 -- Andrew Myers 5

Implicit vs. explicit re-throw
• Implicitly vs. explicitly re-thrown : does an

exception automatically propagate out of a
function?

• Issue: convenience vs. “no surprises”
• Java, C++, ML: yes; CLU: no (converts to

special implicitly-thrown failure exception)

g() throws Exc = (
f()

)

g() throws Exc (
try

f()
catch (Exc) throw Exc;

)

f() throws Exc =(…throw Exc…)

CS 412/413 Spring '00 Lecture 36 -- Andrew Myers 6

Declaration of exceptions
• Must a function declare all exceptions it can

throw?
� Implementer convenience: annoying to declare

all exceptions (overflow, null pointers,…)
� vs. Client Robustness: want to know all

exceptions that can be generated
• Java: must declare “non-error” exceptions
• CLU: must declare all but failure (but uncaught

exceptions automatically converted failure)
• ML: cannot declare exceptions at all (good for quick

hacking, bad for reliable software)
• C++: declaration is optional (useless to user, compiler)

2

CS 412/413 Spring '00 Lecture 36 -- Andrew Myers 7

Naming exceptions

• Java, C++: exceptions are objects
– name of exception is class name
– exceptional return distinguished from normal

return even w/ same type
Exception m() throws Exception {

throw new Exception(); }

• ML, CLU: exceptions are special names with
associated data: disjoint
exception badness(int);
void m() throws badness {

throw badness(4);
}

CS 412/413 Spring '00 Lecture 36 -- Andrew Myers 8

Desired Properties

• Exceptions are for unusual situations and
should not slow down common case:
– No performance cost when function

returns normally
– Little or no performance cost for executing

a try..catch block—when exception is not
thrown.

– Cost of throwing and catching an exception
may be somewhat more expensive than
normal termination

• Not easy to find such an implementation!

CS 412/413 Spring '00 Lecture 36 -- Andrew Myers 9

Static exception throws
• Some exceptions can be turned into

goto statements; can identify lexically
try {

if (b) throw new Foo();
else x = y;

} catch (Foo f) { … }

� if (b) { f = new Foo(); goto l1; }
x = y; goto l2;
l1: { … }
l2:

CS 412/413 Spring '00 Lecture 36 -- Andrew Myers 10

Dynamic exception throws

• Need to find closest enclosing
try..catch dynamically that catches
the particular exception being
thrown

• No generally accepted technique!
(See Appel, Muchnick, Dragon
Book for absence of discussion)

CS 412/413 Spring '00 Lecture 36 -- Andrew Myers 11

Impl. #1: extra return value
• Return an extra (hidden) boolean from every

function indicating whether function returned
normally or not
throw e � return (true, e)
return e � return (false, e)
a = f(b, c) � (exc, t1) = f(b,c);

if (exc) goto handle_exc_34;
a = t1;

• Every function call requires extra parameter,
extra check

• No cost for try..catch unless exception
thrown. Goto labels determined statically.

• Can express as source-to-source translation
CS 412/413 Spring '00 Lecture 36 -- Andrew Myers 12

#2: setjmp/longjmp (orig. Java)
• setjmp(buf) saves all registers into a

buffer buf (incl. sp, pc!), returns 0

• longjmp(e) restores all registers from
buffer e; places 1 into return register.

throw(e) � exc = e;
longjmp(current_catch);

try S catch C � push_catch();
if (setjmp(current_catch) == 0) S
else C;
pop_catch();

3

CS 412/413 Spring '00 Lecture 36 -- Andrew Myers 13

setjmp/longjmp summary

• Advantages:
– no cost as long as try/catch, throw unused
– works even without declared exceptions: no

static information needed

• Disadvantages:
– try/catch, try/catch/finally are slow even

if no exception is thrown
– May need to walk up through several

longjmps until right try..catch is found.
– current_catch must be thread-specific

CS 412/413 Spring '00 Lecture 36 -- Andrew Myers 14

Continuations
• When we return from a function (either

normally or exceptionally) want to jump to
the right continuation—“rest of program”

• Abstractly: a continuation is a function that
does not return, takes its argument in the
return value register (eax)

• Recall: representation of function value is
closure (code address, environment)

• Returning from a function means restoring
pc, fp to previous values: calling continuation
defined by closure (return address, fp) !

• setjmp creates a continuation (saves pc, fp),
longjmp uses it

CS 412/413 Spring '00 Lecture 36 -- Andrew Myers 15

Exceptions as continuations
• Goal of exception handling mechanism is to

map an exception to its continuation

• Extra boolean: pass only one continuation,
returned boolean & exception value resolved
into continuation in caller’s code

• setjmp/longjmp: two continuations passed:
normal and exceptional
– Thread-specific global variable is optimization of

extra argument; resolving of exceptional
continuations done the slow way.

CS 412/413 Spring '00 Lecture 36 -- Andrew Myers 16

#3: Tables of continuations
• Extra boolean: walk up stack frame by frame
• setjmp/longjmp: walk up one try/catch at a time
• Would like to be able to jump up the stack to the

right place immediately
• Problem: need precise continuation info to do

this; try..catch must update a continuation table
CT: (exception→ (pc, fp))
throw e1 � call-continuation(CT[e1])
try S catch(e1) S1…catch(en) Sn �

CTsave = CT; CT = CT[e1�(L1, fp),…,en�(Ln,fp)]; S; goto L;

L1 : CT=CTsave; S1; goto L
…

L:
Expensive!

CS 412/413 Spring '00 Lecture 36 -- Andrew Myers 17

#4: Static Exception Tables
• Invented for CLU by Bob Scheifler

• Observation: exceptions that are caught
usually go up only one or two stack frames;
more important to find right exception
handler (pc) than stack frame (fp)

• Throw code:
– walk up stack one frame at a time (fp known)

– in each frame, use return address to select table

– table maps exception to right pc

• Table is static → no cost for try/catch!

CS 412/413 Spring '00 Lecture 36 -- Andrew Myers 18

Example
f() throws B = (

try g()
catch A => S1

try h()
catch B => S2

)
g() throws A, B = (

try h()
catch B => S3

)
h() throws A,B = (

throw A
)

A
B

A
B

A
B

f

pc
fp

g

pc
fp

h

4

CS 412/413 Spring '00 Lecture 36 -- Andrew Myers 19

Static Exception Tables
• Advantages:

– no cost for try/catch: tables created by compiler
– no extra cost for function call
– throw → catch is reasonably fast (one table lookup

per stack frame, can be cached)

• Disadvantages:
– table lookup more complex if using Java/C++

exception model (need dynamic type
discrimination mechanism)

– can’t implement as source-to-source translation
– must restore callee-save registers during walk up

stack (can use symbol table info to find them)

CS 412/413 Spring '00 Lecture 36 -- Andrew Myers 20

Summary

• Several different exception
implementations commonly used

• Extra return value, setjmp/longjmp
impose overheads but can be
implemented in C (hence used by C++,
Java)

• Static exception tables have no
overhead except on throw, but require
control of compiler back end.

