
1

CS 412/413
Introduction to

Compilers and Translators
Andrew Myers

Cornell University

Lecture 34: Optimizing first-class functions

24 April 00

CS 412/413 Spring '00 Lecture 34 -- Andrew Myers 2

Administration

• Programming Assignment 5 due
today

• Programming Assignment 6 design
report due next Friday (5th)

• Reading: Appel 15.3-15.6

CS 412/413 Spring '00 Lecture 34 -- Andrew Myers 3

First-class functions
• No lexical nesting (C)

– fast but limited
– function value is pointer to code

• Lexical nesting, no upward function values or
storage in data structures (Pascal, Modula-n):
– function value is closure

• Fully first-class: return values (F2, Scheme, ML):
– lots of heap-allocation, more indirection
– Functions roughly as powerful as objects

(sometimes more convenient), but as expensive as
objects… without optimization

code

environment

CS 412/413 Spring '00 Lecture 34 -- Andrew Myers 4

Objects via records and
1st-class functions

class Foo {
f1: T1 … fn: Tn
Foo(a1, …, an) = ec
m1() = e1
…
mn() = en

}

Foo(a1, …, an) = (
f1: T1, …, fn: Tn;
ec;
return new record {

m1 = (function() = e1),
…
mn= (function() = en)

}
)

• Object is record of closures for every method
• Doesn’t handle:

– references to this in ei

– inheritance

CS 412/413 Spring '00 Lecture 34 -- Andrew Myers 5

Functions vs. objects
• Function value (closure):

• Object:

code ptr

environment

code

activation
record

var1
var2

fields

var1
var2

DV
code

code

code

…

CS 412/413 Spring '00 Lecture 34 -- Andrew Myers 6

Inefficiencies
• Functions more expensive to call (extra

environment argument to pass to code)
• Slow access to local variables (on heap)
• Slower access to non-local variables

(chaining through activation records)
• Activation records heap allocated—

much more garbage to collect
• Closure values keep all lexically

containing activation records
reachable—hard to collect garbage

• How to have cake, eat it too?

2

CS 412/413 Spring '00 Lecture 34 -- Andrew Myers 7

Top-level calls

• Top-level functions: no lexical environment;
no implicit static link argument needed

float cos(x: float)
• Call directly to code; don’t pass environment

pointer: cos(x) → call _cos

• Form closure to top-level fcn with dummy
environment
– calls to cos via closure will pass dummy env.
– make last (optional) argument, pass in dedicated

register, or have two entry points (_cos,
_cos_closure) with diff. calling conventions

cos
0

CS 412/413 Spring '00 Lecture 34 -- Andrew Myers 8

Calls to nested fcns

• Evaluation of expression g can be optimized if
used for function call: don’t construct closure
explicitly

int f(n: int,
g1: function(): int) = (

g(): int = n;
if (n == 0) f(1, g, dummy)
else g1() + g()

)

need closure here

just need code address, fp here
CALL(NAME(g), FP, …)

CS 412/413 Spring '00 Lecture 34 -- Andrew Myers 9

Local variable access
• Activation record holds local vars

• Can’t store on stack

• Indirection needed!
(or sacrifice a register)

count make_counter
activation

record

make_counter
stack frame

inc

old fp
ret addr

make_counter(): function(): int = (
// returns a counter function
int count;
inc(): int = (c: int; count++;)
return inc;

)

ret addr
old fpinc

stack frame

inc
activation

record

c

inc

CS 412/413 Spring '00 Lecture 34 -- Andrew Myers 10

Escape analysis
• Idea: local variable only needs to be

stored on heap if it can escape and be
accessed after this function returns

• Only happens if
– variable is referenced from within some

nested function
– the nested function is turned into a closure:

• returned, or
• passed to some function that might store it in a

data structure
(calls to nested functions not a problem)

• This determination: escape analysis

CS 412/413 Spring '00 Lecture 34 -- Andrew Myers 11

Example
make_counter(start: int): function(): int = (

// returns a counter function
int count = start;
inc(): int = (c: int; count++;)
return inc;

)

count

activation
record (heap)

inc

old fp
ret addr start

stack frame
count

escaping variable
record (heap)

inc

old fp
ret addr

stack frame

start

CS 412/413 Spring '00 Lecture 34 -- Andrew Myers 12

Benefits of escape analysis

• Variables that don’t escape are allocated
on stack frame instead of heap: cheap to
access

• If no escaping variables, no heap
allocation at all (common case)

• Closures don’t pin down as much
garbage when created

• One problem: precise escape analysis is
a global analysis, expensive. Escape
analysis must be conservative

3

CS 412/413 Spring '00 Lecture 34 -- Andrew Myers 13

Limitations of escape analysis

interface set { members(f: function(o: object)) }
countAnimals(s: set) = (

count: int = 0;
loop_body(o: object) = (

if (cast(o, Animal)) count ++;
);
s.members(loop_body);
return count;

)

Does count escape?
CS 412/413 Spring '00 Lecture 34 -- Andrew Myers 14

Escape analysis for objects
• Objects ≈ functions …
• Can use escape analysis to allow stack-

allocation of some objects
– if created by new C() in current func.
& reference to object never stored in

• global variable
• another heap-allocated object
& never passed to a function that might store it

– Fast alloc/dealloc, fast access

• Rare optimization: doesn’t work that often!
(methods calls unsafe; need global analysis)

(C++: can specify heap or stack, but unsafe)

CS 412/413 Spring '00 Lecture 34 -- Andrew Myers 15

Inlining object layouts

• More effective optimization: inlining
object fields
class Rectangle {

private: Point ll, ur;
public: Rectangle(int l,r,t,b) {

ll = new Point(l,b);
ur = new Point(r,t); }

}

DVRect
ll
ur

DVPoint
x
y

DVPoint
x
y

DVPoint
x1
y1

x2
y2

? DVPoint

DVRect

CS 412/413 Spring '00 Lecture 34 -- Andrew Myers 16

Conditions
• Effect: less memory fragmentation,

fewer indirections, faster code
• Can inline object fields if

– field always initialized in constructor to
same known class (e.g. Point)

– field never assigned otherwise (need
enscapsulation even against subclasses)

– GC can handle internal pointers
to subobjects

– specialization can help

• Current research!

DVPoint
x1
y1

x2
y2

DVPoint

DVRect

CS 412/413 Spring '00 Lecture 34 -- Andrew Myers 17

Summary
• How to get back to the performance of a

language with 2nd class functions:
– call top-level functions w/o static link

argument

– don’t construct closures on calls

– use escape analysis to avoid heap-
allocating most variables

• Escape analysis ideas apply to
optimization of objects too

