
1

CS 412/413
Introduction to

Compilers and Translators
Andrew Myers

Cornell University

Lecture 31: Garbage collection

17 April 00
CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 2

Administration

• Prelim 2 graded

• Programming Assignment 5
due Friday

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 3

Schedule

Topics for remainder of course:
• Post-compiler support

– Garbage collection
– Linking and loading
– Meta-objects
– JITs and interpreters

• Advanced language support
– First-class functions
– Exceptions
– Parametric polymorphism

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 4

Outline

• Overview of various garbage collection
techniques and impact on compiled
code:
– Mark and sweep garbage collection
– Reference counting GC
– Copying GC
– Generational GC

• More topics in Appel:
– concurrent/incremental garbage collection
– heap management

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 5

Garbage collection

• Garbage collection: the process of
reclaiming memory unused by the
program

• Usually most complex part of the
run-time environment

• Implications for code generation

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 6

Problem
• Java, Iota+, C++ have new operator that

allocates new memory
• How do we get it back when the object

is not needed any longer?
• C++: explicit memory management

– delete operator destroys object, allows
reuse of its memory -- programmer decides
how to collect garbage

– makes modular programming difficult—
have to know what code “owns” every
object so that objects are deleted exactly
once

2

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 7

Automatic garbage collection

• Want to delete objects automatically if
they won’t be used again: undecidable

• Conservative: delete only objects that
definitely won’t be used again

• Reachability: objects definitely won’t be
used again if there is no way to reach
them from root references that are
always accessible

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 8

Object graph
• Stack, registers are treated as the roots of the object

graph. Anything not reachable from roots is garbage
• How can non-reachable objects can be reclaimed

efficiently? Compiler can help

ax

bx

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 9

Mark and sweep collection

• Classic algorithm with two phases
• Phase 1: Mark all reachable objects

– start from roots and traverse graph forward
marking every object reached

• Phase 2: Sweep up the garbage
– Walk over all allocated objects and check

for marks
– Unmarked objects are reclaimed
– Marked objects have their marks cleared
– Optional: compact all live objects in heap

(need double indirection via object table)
CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 10

Traversing the object graph

3

2

6

4

5

1

ax

bx

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 11

Implementing mark phase

• Mark and sweep generally implemented
as depth-first traversal of object graph

• Has natural recursive implementation

• What happens when we try to mark a
long linked list recursively?

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 12

Pointer reversal

• Idea: during DFS, each pointer only
followed once. Can reverse pointers
after following them -- no recursion
needed! (Deutsch-Waite-Schorr alg.)

• Implication: objects are broken while
being traversed; all computation over
objects must be halted during mark
phase (oops)

3

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 13

Conservative Mark & Sweep

• Allocated storage contains both pointers and
non-pointers; integers may look like pointers

• Treating a pointer as a non-pointer: objects
may be garbage-collected even though they
are still reachable and in use

• Treating a non-pointer as a pointer: objects
are not garbage collected even though they
are not pointed to (safe)

• Conservative collection: assumes things are
pointers unless they can’t be; requires no
language support (works for C!)

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 14

Cost of mark and sweep

• Mark and sweep algorithm reads all
memory in use by program: run time is
proportional to total amount of data
(live or garbage)

• Can pause program for long periods!
• Basic mark & sweep requires ability to

manage heap of variable-sized objects; typical
heap implementation only allocates memory
in 2n byte units to avoid fragmentation, make
allocation/deallocation fast. ~30% space hit

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 15

Reference counting

• Old algorithm for automatic garbage
collection: associate with every object a
reference count that is the number of
incoming pointers

• When number of incoming pointers is
zero, object is unreachable: garbage

• Compiler emits extra code to increment
and decrement reference counts
automatically: 5-30% performance hit

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 16

Reference counts

• Reference counting doesn’t detect
cycles!

1 1

2

5

2

0 1 1

1 1

1

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 17

Performance problems
• Consider assignment x.f = y
• Without ref-counts: mov [tx + f_off], ty
• With ref-counts:

t1 = M[tx + f_off]; c = M[t1 + refcnt]; c = c - 1; M[t1
+ refcnt] = c; if (c == 0) goto L1 else goto L2; L1:
call release_Y_object(t1); L2: M[tx + f_off] = ty; c =
M[ty + refcnt]; c = c + 1; M[ty + refcnt] = c;

• Data-flow analysis can be used to avoid
unnecessary increments & decrements

• Can pause program, overrun stack!
• Result: reference counting not used much by

real language implementations

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 18

Copying collection

• Like mark & sweep: collects all garbage

• Basic idea: keep two memory heaps
around. One heap in use by program;
other sits idle until GC requires it

• GC copies all live objects from active
heap to the other; dead objects
discarded en masse. Heaps then switch
roles. During collection, heaps are
called from-space and to-space

4

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 19

Copying collection
(Cheney’s)

• Copying starts by moving all root objects from
from-space to to-space

• From space traversed breadth-first from
roots, objects encountered are copied to top of
to-space.

scan
next

from-space to-space

roots

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 20

Benefits of copying collection

• Once scan=next, all uncopied objects are
garbage. Root pointers (registers, stack) are
swung to point into to-space, making it active

• Nice properties:
– Simple, no stack space needed
– Run time proportional to # live objects
– Automatically eliminates fragmentation by

compacting memory
– malloc(n) implemented as (top = top + n)

• Precise pointer information required
• Twice as much memory used

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 21

Baker’s Concurrent GC
• GC pauses avoided by doing GC

incrementally; collector & program both run
• Program only holds pointers to to-space
• On field fetch, if pointer to from-space, copy

object and fix pointer (extra fetch code: 20%)
• On swap, copy roots and fix stack/registers

scan
next

from-space to-space

roots
CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 22

Generational GC

• Observation: if an object has been
reachable for a long time, it is likely to
remain so

• In long-running system, mark & sweep,
copying collection waste time, cache
scanning/copying older objects

• Approach: assign objects to different
generations G0, G1, G2,…

• Generation G0 contains newest objects,
most likely to become garbage (<10% live)

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 23

Generations

• Consider a two-generation system. G0 =
new objects, G1 = tenured objects

• New generation is scanned for garbage
much more often than tenured objects

• New objects eventually given tenure if
they last long enough

• Roots of garbage collection for
collecting G0 include all objects in G1 (as
well as stack, registers)

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 24

Remembered set

• How to avoid scanning all tenured objects?

• In practice, few tenured objects will point to
new objects; unusual for an object to point to
a newer object

• Can only happen if older object is modified
long after creation to point to new object

• Compiler inserts extra code on object field
pointer writes to catch modifications to older
objects—older objects are remembered set for
scanning during GC, tiny fraction of G1

5

CS 412/413 Spring '00 Lecture 31 -- Andrew Myers 25

Summary
• Garbage collection is an aspect of the program

environment with implications for
compilation

• Important language feature for writing
modular code

• Iota, Iota+: Boehm/Demers/Weiser collector
http://reality.sgi.com/boehm/gcdescr.html
– conservative: no compiler support needed
– generational: avoids touching lots of memory
– incremental: avoids long pauses
– true concurrent (multi-processor) extension exists

• GC is here to stay! (thanks to Java)

