CS 412/413

Introduction to

Compilers and Translators
Andrew Myers
Cornell University

Lecture 30: Instruction scheduling
14 April 00

Administration

* PA5due in 1 week
» Optional reading: Muchnick 17

Impact of instruction ordering

* Pre-1982: microprocessors ran instructions
implemented in microcode instructions
— Memory faster than processor; always 1 cycle to access
— Time to execute instruction sequence = sum of individual
instruction times
* Modern processors (MIPS, > 80486)

— pipelining, multiple functional units allow different
instruction executions to overlap -- different orderings
produce varying degrees of overlap

— memory may take ~100 cycles to access: loads should be
started as early as possible
« Instruction order has significant performance impact
on modern architectures

Instruction ordering issues

* Modern superscalar architecture “executes N
instructions every cycle”

« Pentium: N = 2 (U-pipe and V-pipe)

Pentium 11+: N=5; dynamic translation to 1-4* pops

Reality check: about 1.2 instructions per cycle on

average with good instruction ordering -- processor

resources are usually wasted

Processor spends a lot of time waiting:

— Branch stalls

— Memory stalls

— Expensive arithmetic operations

« Avoiding stalls requires understanding processor
architecture(s) (Intel Arch. SDM Vol. 3, Chapter 13)

Simplified architecture

model

e Assume simple MIPS-like pipelined
architecture -- 5 pipeline stages
(Pentium 11: 9)

F: Instruction fetch -- read instruction
from memory, decode | ‘ R ‘ A ‘ M ‘W‘

R: Read values from registers
A: ALU

M: Memory load or store

W: Write back result to registers

Examples

FIR[A[M]|w]
R: read bx W: store into ax

F: extractimm.10 R:readax A:add
operands W: store into ax

R: read dx, 16 A: compute address
M: read from cache W: store into cx

Non-pipelined execution

time

FIR|A|lW

FIR[A[M[w]

3-5 cycles per instruction

Pipelined Execution

time
FIR[A[M[wW
FIR[A[M[w
FIR[Aa[M|wW
FIR[A MW
FIR|A|[M W]

* New instruction begun every cycle
* Most pipeline stages busy every cycle

8

Superscalar execution

Memory Stalls

mov ax, [cX + 16]

add bx, ax
memory value available here (if in cache)

FIR[A[M|wW
FIR|A|[M W]

needed here!

FIR[A[M]|wW
FIR|A|[M|wW]|
- will need to stall processor by one cycle

U F|RIAM|W « Two copies of
VIFIR|AIM|W execution units
UF RIA[M|W « Many instructions
VIF|R|A|M|W executed in parallel
UF|RIA|M|W
VIF|R[A|M|W
UF|R|IAIM|W
VIFIR|A|M|W
U F|R|A|M|W
VIFIR|A|M|W
9
Solutions:

» Option 1: (original Alpha, 486,
Pentium)
Processor stalls on use of result
until available. Compiler should
reorder instructions if possible:
mov ax, [cx + 16] mov ax, [cx + 16]

add bx, ax add cx, 1
add cx, 1><add bx, ax

No interlocks

e Option 2: (R3000) Memory result
not available until two instructions
later; compiler must insert some

instruction. mov ax, [cx + 16]
nop

mov bx, ax
mov ax, [cx + 16] add cx. 1
mov bx, ax

mov ax, [cX + 16]
add cx, 1 add cx, 1

mov bx, ax

Out-of-order execution

« Out-of-order execution (PowerPC, recent
Alpha, MIPS, P6): can execute instructions
further ahead rather than stall -- compiler
instruction ordering is less important

e Processor has reorder buffer from which
viable instructions are selected on each cycle

mov ax, [c><+16]‘ F ‘ RIA|M|W
mov bx, ax FIR|IA|M|W
addex,1 | F|R|IA MW

Branch stalls

« Branch, indirect jump instructions: next
instruction to execute not known until
address known

« Processor stall of 3-10 cycles!

cmp ax, bx ‘F R|ANM|W
jzL FIR/A|M|W
? MFIR[A[M][W]
beqri,r2,L [F [R|ApM|w
? S FIR[A[M[wW]

Option 1: stall

» 80486 stalls branches till pipeline
empty!

e Early Alpha processors: start initial
pipeline stages on predicted branch
target, stall until target address known
(3+ cycle stall on branch mispredict)

beqrl, L [F[R|AM[W]
mov r2, r3 FIRIFIRIAIM[W
Id r4, [t6+16] FIR[F[R[A|M M

Dealing with stalls

« Alpha: predicts backward branches taken (loops),
forward branches not taken (else clauses), also has
branch prediction cache

« Compiler should avoid branches, indirect jumps

— unroll loops!

— use conditional move instructions (Alpha, Pentium Pro)
or predicated instructions (Itanium) -- can be inserted as
low-level optimization on assembly code

cmp cx, 16

jz skip cmp cx, 16
mov ax, bx cmovz ax, bx

skip:

MIPS: branch delay slot

« Instruction after branch is always
executed : branch delay slot

beqrl, r2, L ‘F‘ R ‘ A ‘ M ‘W‘
mov ax, bx
<target>
« Options for compiler:
— always put nop after branch
— move earlier instruction after branch
— move destination instruction if harmless
e Problem: branch delay slot hasn't scaled

FIR[A[mMIw]

Real architectures

Deeper pipelines, superscalar

—MIPS R4000 : 8 stages; R10000: 8 stages x
4 way

—Alpha: 11 stages, 2 or 4 way

—Pentium P6: 9 stage (uops), 5 way, 9 stage
dynamic translation pipeline

Some instructions take much longer to

complete - multiply, divide, cache miss

Even register operands may not be

ready in time for next instruction

Resource conflicts

 Typical superscalar processors: 4-way

e <4 copies of some functional units

« R10000: 2 integer ALU units, 2 floating
point ALU units. Pentium: 1/1

« Issuing too many ALU operations at
once means some pipelines stall -- want
to interleave other kinds of operations
to allow all 4 pipelines to fill

Instruction scheduling

» Goal: reorder instructions so that all
pipelines are as full as possible

Instructions reordered against some
particular machine architecture and
scheduling rules embedded in hardware

May need to compromise so that code

works well on a variety of architectures
(e.g. Pentium vs. Pentium I1)

20

Scheduling constraints

Instruction scheduling is a low-level
optimization: performed on assembly
code

Reordered code must have same effect
as original

Constraints to be considered:

—data dependencies

—control dependencies: only within BB
—resource constraints

Data dependencies

If two instructions access the same
register or memory location, they may
be dependent

True dependency: write/read
mov ax, [cx + 16]; add bx, ax
Anti-dependency: read/write
add bx, ax; mov ax, [cx + 16]

e Output dependency: write/write
mul bx; mov ax, cx - both update ax

Example

. mov cx, [bp+8]

. add cx, ax

. mov [bp + 4], ax
. mov dx, [cx + 4]
. add ax, dx

. mov [bp + 4], bx

oOuUh wWNBE

23

Dependency Graph

 If one instruction depends on another,
order cannot be reversed -- constrains
scheduling

* Register dependencies easy to identify

 Memory dependencies are trickier: two
memory addresses may be aliases for
each other — need alias analysis
mov [dx + 16], ax

mov bx, [cx - 4] > dependency?

Simple reordering

< Reorder only within basic block

« Construct dependence graph for each
basic block
—nodes are instructions
—edges are instruction dependencies
—graph will be a DAG (no cycles)

< Any valid ordering must make all
dependence edges go forward in code:
topological sort of dependence graph

25

List Scheduling Algorithm

Initialize ready list R with all instructions not

dependent on any other instruction

e Loop until R is empty

— pick best node in R and append it to reordered
instructions

— update ready list with ready successors to best
node

* Works for simple & superscalar processors

* Problem: Determining best node in R is NP-
complete! Must use heuristic.

Greedy Heuristic

« If instruction predecessors won't be
sufficiently complete yet, creates stall
Choose instruction that will be scheduled
as soon as possible, based on start time of
its predecessors: simulate processor
* How to break ties:
—pick node with longest path to DAG leaf
—pick node that can go to non-busy pipeline
—pick node with many dependent successors

27

Scheduling w/ FRAMW model

Ready

13 1FR
23 3
2,6 2
4,6
5,6
5

'r|
NT O >
oM >z
IR IR
HIEEEE
o> Z|sS
=

MW
AlM W‘ 1. mov cx, [bp+8]

2. add cx, ax

3. mov [bp + 4], ax
. 4. dx, + 4
Result: eliminated stalls after 1 & 4, ¢ ooy a o *

moved memory operations earlier 6. mov [bp + 4], bx

28

Register allocation conflict

« Problem: use of same register creates
anti-dependencies that restrict
scheduling

¢ Register allocation before scheduling:
prevents good scheduling

« Scheduling before register allocation:
spills destroy scheduling

« Solution: schedule abstract assembly,
allocate registers, schedule again!

29

Summary

* Instruction scheduling very
important for non-fancy processors

 Improves performance even on
processors with out-of-order
execution (dynamic reordering
must be more conservative)

« List scheduling provides a simple
heuristic for instruction scheduling

30

