
1

1

CS 412/413
Introduction to

Compilers and Translators
Andrew Myers

Cornell University

Lecture 30: Instruction scheduling

14 April 00
2

Administration

• PA 5 due in 1 week

• Optional reading: Muchnick 17

3

Impact of instruction ordering

• Pre-1982: microprocessors ran instructions 
implemented in microcode instructions
– Memory faster than processor; always 1 cycle to access

– Time to execute instruction sequence = sum of individual 
instruction times

• Modern processors (MIPS, ≥ 80486)
– pipelining, multiple functional units allow  different 

instruction executions to overlap -- different orderings 
produce varying degrees of overlap

– memory may take ~100 cycles to access: loads should be 
started as early as possible

• Instruction order has significant performance impact 
on modern architectures

4

Instruction ordering issues
• Modern superscalar architecture “executes N 

instructions every cycle”
• Pentium: N = 2 (U-pipe and V-pipe)
• Pentium II+: N=5; dynamic translation to 1-4+ µops
• Reality check: about 1.2 instructions per cycle on 

average with good instruction ordering -- processor 
resources are usually wasted

• Processor spends a lot of time waiting:
– Branch stalls
– Memory stalls
– Expensive arithmetic operations

• Avoiding stalls requires understanding processor 
architecture(s) (Intel Arch. SDM Vol. 3, Chapter 13)

5

Simplified architecture 
model

• Assume simple MIPS-like pipelined 
architecture -- 5 pipeline stages 
(Pentium II: 9)

• F: Instruction fetch -- read instruction 
from memory, decode

• R: Read values from registers
• A: ALU
• M: Memory load or store
• W: Write back result to registers

F R A M W

6

Examples

• mov ax, bx
R: read bx W: store into ax

• add ax, 10
F: extract imm. 10    R: read ax A:add 
operands W: store into ax

• mov cx, [dx + 16]
R: read dx, 16 A: compute address
M: read from cache W: store into cx

• push [dx + 16]  ?

F R A M W



2

7

Non-pipelined execution

F R A W
F R A M W

add ax, 10

mov cx, [dx + 16]

3-5 cycles per instruction

time

8

Pipelined Execution

F R A M W
F R A M W

F R A M W
F R A M W

F R A M W

time

• New instruction begun every cycle
• Most pipeline stages busy every cycle

9

Superscalar execution

F R A M W
F R A M W

F R A M W
F R A M W

F R A M W
F R A M W

F R A M W
F R A M W

U

U

U

U

V

V

V

V
F R A M W
F R A M W

• Two copies of 
execution units

• Many instructions 
executed in parallel

U
V

10

Memory Stalls
mov ax, [cx + 16]
add bx, ax

F R A M W
F R A M W

memory value available here (if in cache)

F R A M W
F R A M W

- will need to stall processor by one cycle

needed here!

11

Solutions:

• Option 1: (original Alpha, 486, 
Pentium)

Processor stalls on use of result 
until available. Compiler should 
reorder instructions if possible:

mov ax, [cx + 16] mov ax, [cx + 16]
add bx, ax add cx, 1
add cx, 1 add bx, ax

12

No interlocks

• Option 2: (R3000) Memory result 
not available until two instructions 
later; compiler must insert some 
instruction.

mov ax, [cx + 16]
mov bx, ax
add cx, 1

mov ax, [cx + 16]
nop
mov bx, ax
add cx, 1
mov ax, [cx + 16]
add cx, 1
mov bx, ax



3

13

Out-of-order execution

• Out-of-order execution (PowerPC, recent 
Alpha, MIPS, P6): can execute instructions 
further ahead rather than stall -- compiler 
instruction ordering is less important

• Processor has reorder buffer from which 
viable instructions are selected on each cycle

mov ax, [cx + 16]
mov bx, ax

add cx, 1

F R A M W
F R A M W

F R A M W
14

Branch stalls

• Branch, indirect jump instructions: next 
instruction to execute not known until 
address known

• Processor stall of 3-10 cycles!

cmp ax, bx
jz L
?

F R A M W
F R A M W

beq r1, r2, L
?

F R A M W
F R A M W

F R A M W

15

Option 1: stall

• 80486 stalls branches till pipeline 
empty !

• Early Alpha processors: start initial 
pipeline stages on predicted branch 
target, stall until target address known 
(3+ cycle stall on branch mispredict)

F R A M W
F R A M W

F R A M W
F R A M W

F R A M W

beq r1, L
mov r2, r3

ld r4, [t6+16]

16

Dealing with stalls

• Alpha: predicts backward branches taken (loops), 
forward branches not taken (else clauses), also has 
branch prediction cache

• Compiler should avoid branches, indirect jumps
– unroll loops!

– use conditional move instructions (Alpha, Pentium Pro) 
or predicated instructions (Itanium) -- can be inserted as 
low-level optimization on assembly code

cmp cx, 16
cmovz ax, bx

cmp cx, 16
jz skip
mov ax, bx

skip:

17

• Instruction after branch is always 
executed : branch delay slot

• Options for compiler:
– always put nop after branch
– move earlier instruction after branch
– move destination instruction if harmless

• Problem: branch delay slot hasn’t scaled

F R A M W

MIPS: branch delay slot

beq r1, r2, L
mov ax, bx

<target>

F R A M W

F R A M W

18

Real architectures

• Deeper pipelines, superscalar
– MIPS R4000 : 8 stages; R10000: 8 stages x 

4 way
– Alpha: 11 stages, 2 or 4 way
– Pentium P6: 9 stage (uops), 5 way, 9 stage 

dynamic translation pipeline

• Some instructions take much longer to 
complete - multiply, divide, cache miss

• Even register operands may not be 
ready in time for next instruction



4

19

Resource conflicts

• Typical superscalar processors: 4-way

• < 4 copies of some functional units

• R10000: 2 integer ALU units, 2 floating 
point ALU units. Pentium: 1/1

• Issuing too many ALU operations at 
once means some pipelines stall -- want 
to interleave other kinds of operations 
to allow all 4 pipelines to fill

20

Instruction scheduling

• Goal: reorder instructions so that all 
pipelines are as full as possible

• Instructions reordered against some 
particular machine architecture and 
scheduling rules embedded in hardware

• May need to compromise so that code 
works well on a variety of architectures 
(e.g. Pentium vs. Pentium II)

21

Scheduling constraints

• Instruction scheduling is a low-level 
optimization: performed on assembly 
code

• Reordered code must have same effect 
as original

• Constraints to be considered:
– data dependencies

– control dependencies: only within BB

– resource constraints

22

Data dependencies
• If two instructions access the same 

register or memory location, they may 
be dependent

• True dependency: write/read
mov ax, [cx + 16]; add bx, ax

• Anti-dependency: read/write
add bx, ax; mov ax, [cx + 16]

• Output dependency: write/write
mul bx; mov ax, cx - both update ax

23

Example

1. mov cx, [bp+8]
2. add cx, ax
3. mov [bp + 4], ax
4. mov dx, [cx + 4]
5. add ax, dx
6. mov [bp + 4], bx

1

2

3

4 5

T

A
A

T

6

O

T

24

Dependency Graph

• If one instruction depends on another, 
order cannot be reversed -- constrains 
scheduling

• Register dependencies easy to identify

• Memory dependencies are trickier: two 
memory addresses may be aliases for 
each other – need alias analysis
mov [dx + 16], ax
mov bx, [cx - 4] dependency?



5

25

Simple reordering

• Reorder only within basic block

• Construct dependence graph for each 
basic block
– nodes are instructions

– edges are instruction dependencies

– graph will be a DAG (no cycles)

• Any valid ordering must make all 
dependence edges go forward in code: 
topological sort of dependence graph

26

List Scheduling Algorithm

• Initialize ready list R with all instructions  not 
dependent on any other instruction

• Loop until R is empty
– pick best node in R and append it to reordered 

instructions

– update ready list with ready successors to best 
node

• Works for simple & superscalar processors

• Problem: Determining best node in R is NP-
complete! Must use heuristic.

27

Greedy Heuristic

• If instruction predecessors won’t be 
sufficiently complete yet, creates stall

• Choose instruction that will be scheduled 
as soon as possible, based on start time of 
its predecessors: simulate processor

• How to break ties:
– pick node with longest path to DAG leaf

– pick node that can go to non-busy pipeline

– pick node with many dependent successors

28

Scheduling w/ FRAMW model

1

2

3

4 5

T

A A
T

6

O

1. mov cx, [bp+8]
2. add cx, ax
3. mov [bp + 4], ax
4. mov dx, [cx + 4]
5. add ax, dx
6. mov [bp + 4], bx

Ready
1,3
2,3
2,6
4,6
5,6
5

F R A M W
F R A M W

F R A M W

1
3

2
F R A M W4

F R A M W6
F R A M W5

Result: eliminated stalls after 1 & 4, 
moved memory operations earlier

29

Register allocation conflict

• Problem: use of same register creates 
anti-dependencies that restrict 
scheduling

• Register allocation before scheduling: 
prevents good scheduling

• Scheduling before register allocation: 
spills destroy scheduling

• Solution: schedule abstract assembly, 
allocate registers, schedule again!

30

Summary

• Instruction scheduling very 
important for non-fancy processors

• Improves performance even on 
processors with out-of-order 
execution (dynamic reordering 
must be more conservative)

• List scheduling provides a simple 
heuristic for instruction scheduling


