CS 412/413

Introduction to Compilers and Translators Andrew Myers Cornell University

Lecture 29: More optimizations 10 April 00

Outline

- Loop optimizations
 - -Loop-invariant code motion
 - -Strength reduction
 - Loop unrolling
 - -Array bounds checks
- Eliminating null checks
- Alias analysis
- Incremental dataflow analysis

CS412 Spring '00 Lecture 29 -- Andrew Myers

Dominator data-flow analysis

- A dom B if B is reachable only by going through A.
- Forward analysis; *out*[*n*] is set of nodes dominating n
- "A dom B only if A dominates all predecessors of B"
 L = sets of nodes ordered by
- $\Box = \text{sets of nodes of defed by}$ $\Box = \cap$ $\top = \{\text{all } n\}$ $F_n(x) = x \cup \{n\}$

CS412 Spring '00 Lecture 29 -- Andrew Myers

Redunda for (int i=0; i <a.lengt a[i] = a[i]+1; }</a.lengt 	nt com h; i++) {	ipi	utation
i=0 L0: t0-a-4 tlen=[t0] tcmp=i <t0 if tcmp goto Lend else L L1: t1=i⁴ t2=a+t1 t0=a-4 tlen=[t0] tcmp=i<t0 if tcmp goto Lok1 else L LA1: abort</t0 </t0 	Lok1:t3=i*4 t4=a+t3 t0=a-4 t1en=[t0] tcmp=l <t0 if tcmp go LA2: abort Lok2: t5=[t4] t6=t5+1 [t2]=t6 a1 i=i+1 goto L0</t0 	L0: L1:	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Induction variables Induction variables are variables with value *ai* + *b* on the *ith* iteration of a natural loop, for constants *a* & *b*Various optimizations can exploit

- information about induction variables:
 - -strength reduction
 - -array bounds check elimination
 - –loop unrolling

CS412 Spring '00 Lecture 29 -- Andrew Myers

Rules

- Given reference a[k] where k is an induction variable with value *a***i* + *b*, must find a conditional test on some induction variable j
 - test terminates the loop
 - $\, \text{test}$ dominates the reference to a[k]
 - test is against some loop invariant such that provably k $<_{\rm u}$ a.length
- When to perform optimization?
- AST? Need domination analysis, other optimizations not done.
- Quadruples? Hard to recognize array length, array accesses. Must propagate annotations.
 CS412 Spring '00 Lecture 29 -- Andrew Myers

- string operation
- *Idea:* Once we've checked for null, shouldn't need to check again

CS412 Spring '00 Lecture 29 -- Andrew Myers

Example		
u = p.x + p.y		
$\implies t1 = p! = 0$	t1 = p != 0	
If t1 goto L1 else L2	If t1 goto L1 else L2	
L2. db01t 11: ax = p + 4	L2. about $11 \cdot ay = p \pm 4$	
tx = M[ax]	tx = M[ax]	
$t_2 = p! = 0$ CSE: $t_2 = t_1$	$t_2 = t_1$ Copy if t_1 gots	
if t2 goto L3 else L4	goto L4 Bool: t1 = true	
L3: abort	L3: abort	
L4: ay = p + 8	L4: ay = p + 8	
ty = M[ay]	ty = M[ay]	
u = tx + ty	u = tx + ty	
CS412 Spring '00 Lecture 29 Andrew Myers	17	

t1 – n I– 0	t1 – n I– 0	CIUMP n I= 0 1
if t1 anto 11 else 12	if t1 anto 11 else 12	ABORT
L2: abort	L2: abort	L1: MOVE(u, M[p+4]
L1: ax = p+4	L1: ax = p+4	+ M[p+8]
tx = M[ax]	tx = M[ax]	
t2 = t1		
goto L4		
L3: abort		
L4: ay = p + 8	ay = p + 8	
ty = M[ay]	ty = M[ay]	
u = tx + ty	u = tx + ty	
	ι	$\mathbf{i} = \mathbf{p} \cdot \mathbf{x} + \mathbf{p} \cdot \mathbf{y}$

Aliasing

- Problem: don't know when two memory operands might refer to same location (*alias* one another)
- Flow-insensitive alias analysis: "*x* may alias *y*"
- Flow-sensitive alias analysis: "x may alias y at program point (flowgraph edge) p"
- Key: exploit high-level language knowledge - stack and heap locations cannot be aliases - objects of unrelated types cannot be aliases

21

• Alias analysis: for each node, variable x, determine which things [x] might alias

CS412 Spring '00 Lecture 29 -- Andrew Myers