
1

CS 412/413
Introduction to

Compilers and Translators
Andrew Myers

Cornell University

Lecture 29: More optimizations
10 April 00

CS412 Spring '00 Lecture 29 -- Andrew Myers 2

Outline

• Loop optimizations
–Loop-invariant code motion
–Strength reduction
–Loop unrolling
–Array bounds checks

• Eliminating null checks
• Alias analysis
• Incremental dataflow analysis

CS412 Spring '00 Lecture 29 -- Andrew Myers 3

Dominator data-flow analysis

• A dom B if B is reachable only by going
through A.

• Forward analysis; out[n] is set of nodes
dominating n

• “A dom B only if A dominates all
predecessors of B”
L = sets of nodes ordered by ⊆
�= �
� = {all n}
Fn(x) = x ∪ {n}

CS412 Spring '00 Lecture 29 -- Andrew Myers 4

Dominators and loops

• Defn of loop: set of
strongly-connected
nodes with single entry
point: loop header node

• loop header dominates
all other nodes in loop

• Loop must contain back
edge w/ respect to
dominance relationship:
n→h where h dom n

h
header

loop exit

back edge?

CS412 Spring '00 Lecture 29 -- Andrew Myers 5

Completing control-flow analysis

• Dominator analysis gives all
back edges

• Each back edge n→h has an
associated natural loop with
h as its header: all nodes
reachable from h that reach n
without going through h

• For each back edge, can find
its natural loop:

{n’ | n’ reachable from h} �
{n’ | n reachable from n’ in G-h}

1

2

3 4

5 6

78

9 10

CS412 Spring '00 Lecture 29 -- Andrew Myers 6

Control tree

• Nest loops based on subset
relationship between natural loops

• Exception: natural loops may share
same header; merge them into
larger loop.

• Build control tree using nesting
relationship

1

2

3 4

5

6 4

1

2

3 4

2

CS412 Spring '00 Lecture 29 -- Andrew Myers 7

Redundant computation

for (int i=0; i<a.length; i++) {
a[i] = a[i]+1;

}

i=0
L0: t0=a-4

tlen=[t0]
tcmp=i<t0
if tcmp goto Lend else L1

L1: t1=i*4
t2=a+t1
t0=a-4
tlen=[t0]
tcmp=i<t0
if tcmp goto Lok1 else LA1

LA1: abort

Lok1:t3=i*4
t4=a+t3
t0=a-4
tlen=[t0]
tcmp=i<t0
if tcmp goto Lok2 else LA2

LA2: abort
Lok2: t5=[t4]

t6=t5+1
[t2]=t6
i=i+1
goto L0

t0=a-4
tn=[t0]
t1=a
t2=a+4

L0: i=0
tcmp=i<tn
if tcmp goto Lend else L1

L1: t3=[t2]
[t1]=t3
t2=t2+4
t1=t1+4
i=i+1
goto L0

CS412 Spring '00 Lecture 29 -- Andrew Myers 8

Loop-invariant hoisting
• Idea: move computations that always give the same

result out of the loop: only compute once!
• Hoisting a + b: a or b must be

– constant,
– only defined outside loop (use reaching definitions),
– or only one definition inside loop whose expression is loop-

invariant

• Can identify all loop-invariant exprs in one pass

h

t=a+b

h

t1=a+b

code
motion

t=t1

copy
prop.

CS412 Spring '00 Lecture 29 -- Andrew Myers 9

Induction variables

• Induction variables are variables with
value ai + b on the ith iteration of a
natural loop, for constants a & b

• Various optimizations can exploit
information about induction variables:

–strength reduction

–array bounds check elimination

–loop unrolling

CS412 Spring '00 Lecture 29 -- Andrew Myers 10

Identifying induction variables

• Basic induction variables: only one
definition of the form i = i + K

• Derived induction variables: value is
i * M + N for some b.i.v. i

j = 3;
for (i = 0; i < n; i++) {

j = j + 1;
k = i*4 + 8;
m = k*12 + j*2;
…

}

CS412 Spring '00 Lecture 29 -- Andrew Myers 11

Strength reduction
• Every derived induction variable k can be written as

a*i + b, a and b constants, i some basic induction
variable

• For all distinct (a, b) pairs:
– insert before loop header k’ = b
– insert after loop header k’ = k’ + a
– Replace definition of any k whose formula is

a*i + b with k = k’

• Result: multiplication(s) replaced by single addition

• Additional optimizations facilitated: copy/constant
propagation, dead variable elimination, dead code
elimination

t1=i*4 � t1=t1+4

CS412 Spring '00 Lecture 29 -- Andrew Myers 12

Loop unrolling

• Loop unrolling: creates K copies of loop
in sequence

h

Useless unrolling:
(K=2)

h

h

3

CS412 Spring '00 Lecture 29 -- Andrew Myers 13

Using induction variables

• When loop test expression
depends on induction
variable (e.g. i < n), can use
one loop test to ensure that
entire unrolled loop will
succeed (i+K-1 < n): remove
all interior loop tests

• Additional loop is needed to
“finish up” 0..K-1 iterations

h

h

Useful unrolling
CS412 Spring '00 Lecture 29 -- Andrew Myers 14

Array bounds checks
• Iota+: On every expression a[i] , must ensure

i < length a, i ≥ 0 (i <u length a)
• Checking array bounds is expensive
• Array indices are often induction variables --

can use induction variable information to
avoid the bounds check entirely!

• Can eliminate the bounds check if we can
prove at compile time that it will always
succeed

for (int i=0; i<a.length; i++) {
a[i] = a[i]+1;

}
two unnecessary bounds checks

CS412 Spring '00 Lecture 29 -- Andrew Myers 15

Rules

• Given reference a[k] where k is an induction
variable with value a*i + b, must find a
conditional test on some induction variable j
– test terminates the loop
– test dominates the reference to a[k]
– test is against some loop invariant such

that provably k <u a.length
• When to perform optimization?

– AST? Need domination analysis, other
optimizations not done.

– Quadruples? Hard to recognize array length,
array accesses. Must propagate annotations.

CS412 Spring '00 Lecture 29 -- Andrew Myers 16

Null checks

• Another costly operation: checking for
null pointers

• Java, Iota+ : needed on every
– field access or assignment (except on this)

– method invocation (except on this)

– array element access

– string operation

• Idea: Once we’ve checked for null,
shouldn’t need to check again

CS412 Spring '00 Lecture 29 -- Andrew Myers 17

Example

u = p.x + p.y
� t1 = p != 0 t1 = p != 0

if t1 goto L1 else L2 if t1 goto L1 else L2
L2: abort L2: abort
L1: ax = p + 4 L1: ax = p+4
tx = M[ax] tx = M[ax]
t2 = p != 0 CSE: t2 = t1 t2 = t1
if t2 goto L3 else L4 goto L4
L3: abort L3: abort
L4: ay = p + 8 L4: ay = p + 8
ty = M[ay] ty = M[ay]
u = tx + ty u = tx + ty

Bool: t1 = true
Copy: if t1 goto ...

CS412 Spring '00 Lecture 29 -- Andrew Myers 18

Boolean propagation
• Augment constant propagation

with propagation of booleans

• Almost fits into standard dataflow
analysis model
– different information leaves on

different out-edges of if statements

if xi
(…, true, …) (…, false, …)

xi xi

4

CS412 Spring '00 Lecture 29 -- Andrew Myers 19

Finishing optimization
t1 = p != 0 t1 = p != 0 CJUMP p != 0, L1
if t1 goto L1 else L2 if t1 goto L1 else L2 ABORT
L2: abort L2: abort L1: MOVE(u, M[p+4]
L1: ax = p+4 L1: ax = p+4 + M[p+8])
tx = M[ax] tx = M[ax]
t2 = t1
goto L4
L3: abort
L4: ay = p + 8 ay = p + 8
ty = M[ay] ty = M[ay]
u = tx + ty u = tx + ty

u = p.x + p.y

CS412 Spring '00 Lecture 29 -- Andrew Myers 20

Memory accesses
• Memory operations are expensive,

confuse optimizer
– want to use CSE to eliminate extra reads

whenever possible
– converting [t] to temporary makes many

optimizations more effective

• Problem: kill[n] for statement [a] = b:
gen kill

[a]=b b [t]
(for all t that might
be equal to a)

CS412 Spring '00 Lecture 29 -- Andrew Myers 21

Aliasing
• Problem: don’t know when two memory

operands might refer to same location (alias
one another)

• Flow-insensitive alias analysis: “x may alias y”

• Flow-sensitive alias analysis: “x may alias y at
program point (flowgraph edge) p”

• Key: exploit high-level language knowledge
– stack and heap locations cannot be aliases

– objects of unrelated types cannot be aliases

• Alias analysis: for each node, variable x,
determine which things [x] might alias

