

Administration

- HW4 due Monday
- Prelim 2 next Thursday
- MMII graphical user interface package released for PA5

Constant propagation

- Idea: propagate and fold integer constants in one pass

$$
\begin{aligned}
& \mathrm{x}=1 ; \\
& \mathrm{y}=5+\mathrm{x} ; \\
& \mathrm{z}=\mathrm{y}^{*} \mathrm{y} ;
\end{aligned} \quad \square\left\{\begin{array}{l}
\mathrm{x}=1 ; \\
\mathrm{y}=6 ; \\
\mathrm{z}=36 ;
\end{array}\right.
$$

- Information about a single variable:
i. Variable never defined
ii. Variable has single constant value
iii. Variable has multiple values

CS $412 / 413$ Spring ' 00 Lecture 28 -- Andrew Myers

Rest of defn.

- Flow function for $\mathrm{x}=\mathrm{x} \mathrm{OP} \mathrm{c}_{1}$:
$\mathrm{F}_{\mathrm{n}}(\mathrm{T})=\mathrm{T}$
$\mathrm{F}_{\mathrm{n}}(\perp)=\perp$
$\mathrm{F}_{\mathrm{n}}\left(\mathrm{c}_{2}\right)=\mathrm{c}_{2} \mathrm{OP} \mathrm{c}_{1}$
- Flow function is monotonic: iterative solution works
- What about multiple variables
$\mathrm{x}_{1} . . \mathrm{x}_{\mathrm{n}}$? Want tuple ($\mathrm{v}_{1}, \ldots \mathrm{v}_{\mathrm{n}}$),

Multiple vars

- Dataflow value is a tuple $\left(\mathrm{v}_{1}, \ldots \mathrm{v}_{\mathrm{n}}\right)$, each v_{i} in lattice $\mathrm{L}=$
- Set of tuples $\left(\mathrm{v}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}\right)$ is also a lattice!

$$
\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right) \sqsubseteq\left(\mathrm{v}_{1}^{\prime}, \ldots, \mathrm{v}_{\mathrm{n}}^{\prime}\right) \Leftrightarrow \forall_{\mathrm{i}} \mathrm{v}_{\mathrm{i}} \sqsubseteq \mathrm{v}_{\mathrm{I}}^{\prime}
$$

$$
\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right) \sqcap\left(\mathrm{v}_{1}^{\prime}, \ldots, \mathrm{v}_{\mathrm{n}}^{\prime}\right)=\left(\mathrm{v}_{1} \sqcap \mathrm{v}_{1}^{\prime}, \ldots, \mathrm{v}_{\mathrm{n}} \sqcap \mathrm{v}_{\mathrm{n}}\right)
$$

- For any two lattices $\mathrm{L}_{1}, \mathrm{~L}_{2}$, have product lattice $\mathrm{L}_{1} \times \mathrm{L}_{2}$ with component-wise ordering
$\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \sqsubseteq\left(\mathrm{v}_{1}^{\prime}, \mathrm{v}_{2}^{\prime}\right) \Leftrightarrow \mathrm{v}_{1} \sqsubseteq \mathrm{v}_{1}^{\prime} \& \mathrm{v}_{2} \sqsubseteq \mathrm{v}_{2}^{\prime}$
- Is this really a lattice?
- Dataflow values are in $\mathrm{L} \times . . \times \mathrm{L}=\mathrm{L}^{\mathrm{n}}$

Flow functions

$$
\begin{aligned}
& \text { - Consider } \mathrm{x}_{1}=\mathrm{x}_{2} \text { OP } \mathrm{x}_{3} \\
& \mathrm{~F}\left(\mathrm{x}_{1}, \mathrm{~T}, \mathrm{x}_{3}\right)=\left(\mathrm{T}, \mathrm{~T}, \mathrm{x}_{3}\right) \\
& \mathrm{F}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{~T}\right)=\left(\mathrm{T}, \mathrm{x}_{2}, \mathrm{~T}\right) \\
& \mathrm{F}\left(\mathrm{x}_{1}, \perp, \mathrm{x}_{3}\right)=\left(\perp, \perp, \mathrm{x}_{3}\right) \\
& \mathrm{F}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \perp\right)=\left(\perp, \mathrm{x}_{2}, \perp\right) \\
& \mathrm{F}\left(\mathrm{x}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}\right)=\left(\mathrm{c}_{2} \mathrm{OP}_{\mathrm{c}_{3}}, \mathrm{c}_{2}, \mathrm{c}_{3}\right)
\end{aligned}
$$

- Monotonic? Distributes over \sqcap ?

Loops

- Most execution time in most programs is spent in loops: 90/ 10 is typical
- Most important targets of optimization: loops
- Loop optimizations:
- loop-invariant code motion
- loop unrolling
- loop peeling
- strength reduction of expressions containing induction variables
- removal of bounds checks
- When to apply loop optimizations?

CS 412/413 Spring' '00 Lecture 28-- Andrew Myers
10

High-level optimization?

- Loops may be hard to recognize in IR or quadruple form -- should we apply loop optimizations to source code or highlevel IR?
- Many kinds of loops: while, do/ while, continue
- loop optimizations benefit from other IRlevel optimizations and vice-versa -- want to be able to interleave
- Problem: identifying loops in call-flow graph

Definition of a loop

- A loop is a set of nodes in the control flow graph, with one distinguished node called the header (entry point)
- Every node is reachable from header, header reachable from every node: strongly-connected component
- No entering edges from outside except to header
- nodes with outgoing edges: loop exit nodes
CS 412/413 Spring '00 Lecture 28 -- Andrew Myers

Nested loops

- Control-flow graph may contain many loops, and loops may contain each other
- Control-flow analysis : identify the loops and nesting structure: control

Dominators

- CFA based on idea of dominators
- Node A dominates node B if the only way to reach B from start node is through A
- Edge in flowgraph is a back edge if destination dominates source

- A loop contains at least one back edge

Finding dominators

- Goal: for every node in flowgraph, find its set of dominators
- Properties of dominators:

1. Every node dominates itself
2. A node \mathbf{B} is dominated by another node \mathbf{A} if \mathbf{A} dominates all of the predecessors of \mathbf{B}

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers

Dominator data-flow analysis

- Forward analysis; out[n] is set of nodes dominating n
- "A node \mathbf{B} is dominated by another node \mathbf{A} if A dominates all of the predecessors of B"

$$
\operatorname{in}[\mathrm{n}]=\cap_{\mathrm{n}^{\prime} \in \operatorname{pred}[n]} \text { out }\left[\mathrm{n}^{\prime}\right]
$$

- Every node dominates itself:

$$
\operatorname{out}[\mathrm{n}]=\operatorname{in}[\mathrm{n}] \cup\{\mathrm{n}\}
$$

- Formally: $\mathrm{L}=$ sets of nodes ordered by \subseteq, flow functions $\mathrm{F}_{\mathrm{n}}(\mathrm{x})=\mathrm{x} \cup\{\mathrm{n}\}, \mathrm{T}=\{$ all n$\}$ \Rightarrow Standard iterative analysis converges on MOP soln
CS 412/413 Spring '00 Lecture 28 -- Andrew Myers

Completing control-flow analysis

- Dominator analysis gives all back edges
- Each back edge $n \rightarrow h$ has an associated natural loop with h as its header: all nodes reachable from h that reach n without going through h
- For each back edge, find its natural loop (1)
- Nest loops based on subset relationship between natural loops
- Exception: natural loops may share same header; merge them into larger loop.
- Build control tree using nesting relationship
CS 412/413 Spring '00 Lecture 28 -- Andrew Myers

Loop-invariant hoisting

- Idea: move computations that always give the same result out of the loop: only compute once!
- Hoisting quadruple q: $t=a+b$. Use reaching definitions analysis to see if a, b are invariant (conservatively)
- Must also ensure q is guaranteed to be executed by loop, q is only defn of t , t not live-in at h

Induction variables

- Induction variables are variables with value $a i+b$ on the $i^{\text {th }}$ iteration of a natural loop, for constants a \&b
- Various optimizations can exploit information about induction variables:
- strength reduction
- array bounds check elimination
- loop unrolling

Identifying induction variables

- Basic induction variables: only one definition of the form $\mathrm{i}=\mathrm{i}+\mathrm{K}$
- Derived induction variables: one definition of the form $\mathrm{j}=\mathrm{i} * \mathrm{M}+\mathrm{N}$
$\mathrm{j}=3$;
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{n} ; \mathrm{i}+\mathrm{H}$) \{
$j=j+1$;
$\mathrm{k}=\mathrm{i} * 4+8$;
$m=k * 12+1 ;$
\}
CS 412/413 Spring '00 Lecture 28 -- Andrew Myers

Loop unrolling

- Loop unrolling: creates K copies of loop

Strength reduction

- Every derived induction variable k can be written as $a * i+b, a$ and b constants, i some basic induction variable
- For all distinct (a,b) pairs:
- insert before loop header $\mathrm{k}^{\prime}=\mathrm{b}$
- insert after loop header $\mathrm{k}^{\prime}=\mathrm{k}^{\prime}+\mathrm{a}$
- Replace definition of any k whose formula is $\mathrm{a}^{*} \mathrm{i}+\mathrm{b}$ with $\mathrm{k}=\mathrm{k}^{\prime}$
- Result: multiplication(s) replaced by single addition
- Additional optimizations facilitated: copy/ constant propagation, dead/ useless variable elimination, dead code elimination

Using induction variables

- When loop test expression depends on induction variable (e.g. i <n), can use one loop test to ensure that entire unrolled loop will succeed ($\mathrm{i}+\mathrm{K}-1<\mathrm{n}$): remove all interior loop tests
- Additional loop is needed to "finish up" 0.. $\mathrm{k}-1$ iterations

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers

$$
24
$$

Summary

- Constant propagation: not all lattice elements are sets; not all analyses give MOP solution.
- Optimizing loop code is critical to good performance
- Loops can be identified automatically in control-flow graph using dominator data-flow analysis; allows interleaving of loop optimizations
- Induction variables enable many loop optimizations: loop unrolling, strength reduction, array bounds checks.

