
1

CS 412/413
Introduction to

Compilers and Translators
Andrew Myers

Cornell University

Lecture 28: Loop optimizations
7 April 00

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 2

Administration

• HW4 due Monday

• Prelim 2 next Thursday

• MMII graphical user interface
package released for PA5

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 3

Last time
Dataflow analysis framework:

1. Lattice of dataflow information
values L with order �, top �

2. Monotonic flow functions Fn : L→L

3. Meet (GLB) operator � on L

n

x

Fn(x)

x y

x � y

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 4

Constant propagation
• Idea: propagate and fold integer

constants in one pass
x = 1; x = 1;
y = 5+x; y = 6;
z = y*y; z = 36;

• Information about a single variable:
i. Variable never defined
ii. Variable has single constant value
iii. Variable has multiple values

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 5

One-variable Const. Prop.
never

defined
constant

constant

constant c1 constant c2

multiple

�

�

… -3 -2 -1 0 1 2 3 …

Full lattice:

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 6

Rest of defn.
• Flow function for x = x OP c1:

Fn(�) = �
Fn(�) = �
Fn(c2) = c2 OP c1

• Flow function is monotonic:
iterative solution works

• What about multiple variables
x1…xn? Want tuple (v1,…vn),

2

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 7

Multiple vars
• Dataflow value is a tuple (v1,…vn), each vi in lattice L=

• Set of tuples (v1,…,vn) is also a lattice!

(v1,…,vn) �(v’1,…,v’n) ⇔ ∀ i vi �v’I
(v1,…,vn) � (v’1,…,v’n) = (v1�v’1,…,vn�vn)

• For any two lattices L1, L2, have product lattice L1×L2
with component-wise ordering

(v1, v2) �(v’1,v’2) ⇔ v1 � v’1 & v2 �v’2
– Is this really a lattice?

• Dataflow values are in L×…×L = Ln

�

�

… -3 -2 -1 0 1 2 3 …

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 8

Flow functions
• Consider x1 = x2 OP x3

F(x1, �, x3) = (�, �, x3)

F(x1, x2, �) = (�, x2, �)

F(x1, �, x3) = (�, �, x3)

F(x1, x2, �) = (�, x2, �)

F(x1, c2, c3) = (c2 OP c3, c2, c3)

• Monotonic? Distributes over �?

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 9

Not MOP!

F((�, 1, 2) � (�, 2, 1)) ≠ F(�, 1, 2)�F(�, 2, 1)

x2 = 1

x3 = 2

x2 = 2

x3 = 1

x1 = x2 + x3

(�, 1, 2) (�, 2, 1)

(�, 1, 2) � (�, 2, 1)=(�, �, �)

(�, �, �)

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 10

Loops
• Most execution time in most programs is

spent in loops: 90/10 is typical

• Most important targets of optimization: loops

• Loop optimizations:
– loop-invariant code motion

– loop unrolling

– loop peeling

– strength reduction of expressions containing
induction variables

– removal of bounds checks

• When to apply loop optimizations?

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 11

High-level optimization?
• Loops may be hard to recognize in IR or

quadruple form -- should we apply loop
optimizations to source code or high-
level IR?
– Many kinds of loops: while, do/while,

continue
– loop optimizations benefit from other IR-

level optimizations and vice-versa -- want
to be able to interleave

• Problem: identifying loops in call-flow graph

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 12

Definition of a loop
• A loop is a set of nodes in the control flow

graph, with one distinguished node called the
header (entry point)

• Every node is reachable
from header, header
reachable from every
node: strongly-connected
component

• No entering edges from
outside except to header

• nodes with outgoing
edges: loop exit nodes

header

loop exit

3

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 13

Nested loops
• Control-flow graph may contain many

loops, and loops may contain each other

• Control-flow analysis : identify the
loops and nesting structure:

inner loop

control
tree

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 14

Dominators
• CFA based on idea of dominators

• Node A dominates node B if the only
way to reach B from start node is
through A

• Edge in flowgraph is a
back edge if destination
dominates source

• A loop contains at least one back edge

1

2

54
3

back edge

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 15

Dominator tree
• Domination is transitive; if A dominates

B and B dominates C, then A dominates
C. A immediately dominates B if
domination not implied transitively

• Every flowgraph has dominator tree
1

2

3 4

5 6

78

9 10

1

2

3 4

5 6

78

9 10

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 16

Finding dominators

• Goal: for every node in flowgraph,
find its set of dominators

• Properties of dominators:
1. Every node dominates itself

2. A node B is dominated by another
node A if A dominates all of the
predecessors of B

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 17

Dominator data-flow analysis
• Forward analysis; out[n] is set of nodes

dominating n
• “A node B is dominated by another node A if

A dominates all of the predecessors of B”

in[n] = ∩n’∈ pred[n] out[n’]
• Every node dominates itself:

out[n] = in[n] ∪ {n}
• Formally: L = sets of nodes ordered by ⊆ , flow

functions Fn(x) = x ∪ {n}, � = {all n}
� Standard iterative analysis converges on
MOP soln

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 18

Completing control-flow analysis
• Dominator analysis gives all back edges

• Each back edge n→h has an associated natural loop
with h as its header: all nodes reachable from h that
reach n without going through h

• For each back edge, find its natural loop

• Nest loops based on subset
relationship between natural loops

• Exception: natural loops may share
same header; merge them into
larger loop.

• Build control tree using nesting
relationship

1

2

3 4

5 6

78

9 10

4

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 19

Loop-invariant hoisting
• Idea: move computations that always give the same

result out of the loop: only compute once!
• Hoisting quadruple q: t = a + b. Use reaching

definitions analysis to see if a, b are invariant
(conservatively)

• Must also ensure q is guaranteed to be executed by
loop, q is only defn of t, t not live-in at h

h

q

h

q

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 20

Induction variables
• Induction variables are variables with

value ai + b on the ith iteration of a
natural loop, for constants a & b

• Various optimizations can exploit
information about induction variables:

–strength reduction

–array bounds check elimination

–loop unrolling

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 21

Identifying induction variables
• Basic induction variables: only one

definition of the form i = i + K
• Derived induction variables: one

definition of the form j = i * M + N
j = 3;
for (i = 0; i < n; i++) {

j = j +1;
k = i*4 + 8;
m = k*12 + 1;
…

}

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 22

Strength reduction
• Every derived induction variable k can be written as

a*i + b, a and b constants, i some basic induction
variable

• For all distinct (a,b) pairs:
– insert before loop header k’ = b

– insert after loop header k’ = k’ + a

– Replace definition of any k whose formula is
a*i + b with k = k’

• Result: multiplication(s) replaced by single addition

• Additional optimizations facilitated: copy/constant
propagation, dead/useless variable elimination, dead
code elimination

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 23

Loop unrolling
• Loop unrolling: creates K copies of loop

in sequence

h

Useless unrolling:
(K=2)

h

h

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 24

Using induction variables
• When loop test expression

depends on induction
variable (e.g. i < n), can use
one loop test to ensure that
entire unrolled loop will
succeed (i+K-1 < n): remove
all interior loop tests

• Additional loop is needed to
“finish up” 0..K-1 iterations

h

h

Useful unrolling

5

CS 412/413 Spring '00 Lecture 28 -- Andrew Myers 25

Summary
• Constant propagation: not all lattice elements

are sets; not all analyses give MOP solution.
• Optimizing loop code is critical to good

performance
• Loops can be identified automatically in

control-flow graph using dominator data-flow
analysis; allows interleaving of loop
optimizations

• Induction variables enable many loop
optimizations: loop unrolling, strength
reduction, array bounds checks.

