
1

CS 412/413

Introduction to

Compilers and Translators
Andrew Myers

Cornell University

Lecture 27: Dataflow analysis theory
5 April 00 CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 2

Administration
• Homework 4 due Monday

• Prelim review April 11, 7-9PM

• Prelim April 13, 7:30PM-9:30PM

–static semantics, IR and assembly
code generation, object-oriented
languages, data-flow analysis,
optimization

CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 3

Dataflow analysis
• Abstractly: propagates dataflow values

representing information about program
through flowgraph. Space of values: L

• Solution: in[n], out[n]∈ L for every node n

• Live variable analysis: set of live variables

• Available expressions: set of available exprs

CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 4

Dataflow analysis framework
Dataflow analysis characterized by:

1. Space of values L

2. Flow function Fn for every node n
out[n] = Fn(in[n])
Fn : L→L

“If l ∈ L is true before executing node n, Fn(l) is true
afterward”

Live vars: Fn(l) = use[n] � (l – def [n])

n

l

Fn(l)

CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 5

Combining operator
1. Space of values L

2. Flow function Fn for every node n

3. Combining operator �

“If we know either l1 or l2 holds
on entry to n, we know at
most l1 � l2”

in[n] = �n�∈ pred[n] out[n�]

live vars: �=� avail exprs: �=�

l1 l2

l1 � l2

CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 6

Iterative analysis

for all n, in[n] = out[n] = �
repeat until no change

for all n
in[n] = �n’ ∈ pred[n] out[n’]
out[n] = Fn(in[n])

end
end

4. maximum information �∈ L

2

CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 7

Questions
Will iterative analysis

– produce a solution when it
terminates?

– produce the best solution
possible?

– terminate?

• Depends on properties of L, Fn, �
CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 8

L as partial order
• Best solution has as much information

as possible – allows most optimization
– Live variables: smallest possible set
– Available expressions: largest possible set

• Some dataflow values contain more
information: l1 � l2 if l2 has more
information than l1

• Live variables: l1 � l2 ⇔ l1 ⊇ l2

• Available expressions: l1 � l2 ⇔ l1 ⊆ l2

CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 9

Partial orders
• L is a partial order defined by ordering

operator �

• Some elements are incomparable

• Properties of a partial order

x � x (reflexive)

x � y & y � z � x � z (transitive)

x � y & y � x � x = y (anti-symmetry)

• Examples: integers ordered by �, types
ordered by <:, sets ordered by ⊆ or ⊇ .

CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 10

Example: subsets of {a,b,c}

{a}{b}

{a,b}

{c }

{a,c}{b,c}

� = {a,b,c}

x

y
x � y

{ } = �

� = ⊆
� = ∩
� = ∪

height: 3

Hasse diagram

CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 11

Greatest lower bound
• Combining operator l1 � l2 gives element l

such that l � l1, l � l2

• l is a lower bound for l1, l2

• Want greatest such element (most info):
greatest lower bound (GLB)

• Partial order with GLB/meet (�) and
LUB/join (�) is a lattice

• With only GLB, a lower semi-lattice

CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 12

Meet-over-paths solution
• Consider a traversal of flowgraph

visiting nodes a, b, c, …, n
• Assume l0 is initial information
• Information known is

Fn(…(Fc(Fb (Fa (l0))))
• Best possible solution is l such that

l � Fn(…(Fc(Fb (Fa (l0))))
for all paths a, b, c, …, n

• MOP soln: �all paths p Fp1(Fp2(Fp3(…)))

3

CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 13

Data-flow equations
• Algorithm repeatedly recomputes each out[n]

as

Fn(�n� ∈ pred[n] out[n�])
• Let x1…xn be out[1]…out[n]. Algorithm:

xi = Fi(�j ∈ pred[i] xj)

• Solution is point in Ln : X = (x1,…xn)
• Total set of equations is X = F(X) where

F(x1,…xn) = (F1(�j ∈ pred[1] xj), F2(…),…)

CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 14

Fixed points
• Iterative analysis: initialize all xi with

top of lattice (X0 = (�, �, �,…)), apply
F(X) until fixed point is reached: Fk(X0)
= Fk+1(X0)

• Fk(X0) is a fixed point of F: a value that
F maps to itself

• Wanted: maximal fixed point (we know
that minimum-information solution �
works)

CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 15

Monotonicity
• Flow functions map lattice values to

other lattice values; must be monotonic

• Monotonicity:

l1 � l2 � F(l1) � F(l2)
“If you have more information entering a node,

you have at least as much leaving”

• Example: reaching definitions. Lattice is all
sets of defining nodes ordered by subset
relation:

Fn(x) = gen[n] � (x - kill[n])
CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 16

Termination
• First step either lowers some xi or terminates
• Second step sees same xi as first step (�), or

possibly lower: F(X0) �X0

• Monotonicity l1 � l2 � F(l1) � F(l2)
� output of second step F2(X0) is lower than

first step (or it terminates): F2(X0) � F1(X0)
• Induction: each iteration moves at least one

node lower in lattice: Fi+1(X0) � Fi(X0)
• # algorithm steps to fixed point is at most

height of lattice H times number of nodes n: k
= O(nH)

CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 17

Solution quality
• MOP is best possible solution:

�all paths p Fp1(Fp2(Fp3(…)))
• Does iterative analysis

xi = Fi(�j ∈ pred[i] xj)
produce the MOP solution?

• Flow functions must distribute over the meet
operator:

�i F(xi) = F(�i xi)

CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 18

Reaching definitions
• L is all sets of defining nodes in call flow

graph. Maximum information means smallest
possible lists of reaching definitions, so:

• Top (�) is the empty set { }, meet (�) is set
union (�)

xn = out[n]

Fn(x) = gen[n] ∪ (x – kill[n])

in[n] = �n’ ∈ prev[n] out[n’]
out[n] = gen[n] ∪ (in[n] - kill[n])

xi = Fi(�j ∈ pred[i] xj)

4

CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 19

Monotonic?
Fn(x) = gen[n] ∪ (x – kill[n])

x1 � x2 = x1 ∪ x2

• Is Fn(x) monotonic?

If x � y, x ⊇ y

Fn(x) = gen[n] ∪ (x – kill[n]) =

gen[n] ∪ ((x ∪ y) – kill[n]) =

gen[n] ∪ (x – kill[n]) ∪ (y – kill[n]) ⊇ Fn(y)

CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 20

MOP?
Fn(x) = gen[n] ∪ (x – kill[n])

x1 � x2 = x1 ∪ x2

• Does Fn(x) distribute over � ?
Fn(x � y) = Fn(x ∪ y)
= gen[n] ∪ ((x ∪ y) – kill[n])
= (gen[n] ∪ (x – kill[n]))

∪ (gen[n] ∪ (y – kill[n]))
= Fn(x) ∪ Fn(y) = Fn(x) � Fn(y)

∴ Iterative analysis always terminates, finds the
best possible (meet-over-paths) solution to
reaching defintions

CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 21

Other analyses
• Live variables

Fn(l) = use[n] � (l – def [n])

� = �

• Available expressions

Fn(l) = gen[n] � (l – kill[n])

� = �

• Computes MOP solutions?

CS 412/413 Spring '00 Lecture 27 -- Andrew Myers 22

Summary
• Standard optimizations require data-

flow analyses that fit into data-flow
analysis framework

• Iterative analysis finds solution if flow
function monotonic in �, combining
function � defines semi-lattice

• Solution is MOP if distribution

condition �i F(xi) = F(�i xi) holds

