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Administration
• Homework 4 due Monday

• Prelim review April 11, 7-9PM

• Prelim April 13, 7:30PM-9:30PM

–static semantics, IR and assembly 
code generation, object-oriented 
languages, data-flow analysis, 
optimization
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Dataflow analysis
• Abstractly: propagates dataflow values 

representing information about program 
through flowgraph. Space of values: L

• Solution: in[n], out[n]∈ L for every node n

• Live variable analysis: set of live variables

• Available expressions: set of available exprs
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Dataflow analysis framework
Dataflow analysis characterized by:

1. Space of values L

2. Flow function Fn for every node n
out[n] = Fn(in[n])
Fn : L→L

“If l ∈ L is true before executing node n, Fn(l ) is true 
afterward”

Live vars: Fn(l) = use[n] � (l – def [n])

n

l

Fn(l)
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Combining operator
1. Space of values L

2. Flow function Fn for every node n

3. Combining operator �

“If we know either l1 or l2 holds
on entry to n, we know at
most l1 � l2”

in[n] = �n�∈ pred[n] out[n�]

live vars: �=� avail exprs: �=�

l1 l2

l1 � l2
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Iterative analysis

for all n, in[n] = out[n] = �
repeat until no change

for all n
in[n] = �n’ ∈ pred[n] out[n’]
out[n] = Fn(in[n])

end
end

4. maximum information �∈ L
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Questions
Will iterative analysis

– produce a solution when it 
terminates?

– produce the best solution 
possible?

– terminate?

• Depends on properties of L, Fn, �
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L as partial order
• Best solution has as much information 

as possible – allows most optimization
– Live variables: smallest possible set
– Available expressions: largest possible set

• Some dataflow values contain more 
information: l1 � l2 if l2 has more 
information than l1

• Live variables: l1 � l2   ⇔ l1 ⊇ l2

• Available expressions: l1 � l2 ⇔ l1 ⊆ l2
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Partial orders
• L is a partial order defined by ordering 

operator �

• Some elements are incomparable

• Properties of a partial order

x � x (reflexive)

x � y & y � z � x � z (transitive)

x � y & y � x � x = y (anti-symmetry)

• Examples: integers ordered by �, types 
ordered by <:, sets ordered by ⊆ or ⊇ .
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Example: subsets of {a,b,c}

{a}{b}

{a,b}

{c }

{a,c}{b,c}

� = {a,b,c}

x

y
x � y

{ } = �

� = ⊆
� = ∩
� = ∪

height: 3

Hasse diagram
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Greatest lower bound
• Combining operator l1 � l2 gives element l

such that l � l1, l � l2

• l is a lower bound for l1, l2

• Want greatest such element (most info): 
greatest lower bound (GLB)

• Partial order with GLB/meet (�) and 
LUB/join (�) is a lattice

• With only GLB, a lower semi-lattice
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Meet-over-paths solution
• Consider a traversal of flowgraph 

visiting nodes a, b, c, …, n
• Assume l0 is initial information
• Information known is

Fn(…(Fc(Fb (Fa (l0))))
• Best possible solution is l such that

l � Fn(…(Fc(Fb (Fa (l0))))
for all paths a, b, c, …, n

• MOP soln: �all paths p Fp1(Fp2(Fp3(…)))
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Data-flow equations
• Algorithm repeatedly recomputes each out[n] 

as

Fn(�n� ∈ pred[n] out[n�])
• Let x1…xn be out[1]…out[n]. Algorithm:

xi = Fi(�j ∈ pred[i]  xj)

• Solution is point in Ln : X = (x1,…xn)
• Total set of equations is X = F(X) where 

F(x1,…xn) = (F1(�j ∈ pred[1] xj), F2(…),…)
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Fixed points
• Iterative analysis: initialize all xi with 

top of lattice (X0 = (�, �, �,…)), apply 
F(X) until fixed point is reached: Fk(X0) 
= Fk+1(X0)

• Fk(X0) is a fixed point of F: a value that 
F maps to itself

• Wanted: maximal fixed point (we know 
that minimum-information solution �
works)
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Monotonicity
• Flow functions map lattice values to 

other lattice values; must be monotonic

• Monotonicity:

l1 � l2 � F(l1) � F(l2)
“If you have more information entering a node, 

you have at least as much leaving”

• Example: reaching definitions. Lattice is all 
sets of defining nodes ordered by subset 
relation:

Fn(x) = gen[n] � (x - kill[n])
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Termination
• First step either lowers some xi or terminates
• Second step sees same xi as first step (�), or 

possibly lower: F(X0) �X0

• Monotonicity  l1 � l2 � F(l1) � F(l2)
� output of second step F2(X0)  is lower than 

first step (or it terminates): F2(X0) � F1(X0) 
• Induction: each iteration moves at least one 

node lower in lattice: Fi+1(X0) � Fi(X0)
• # algorithm steps to fixed point is at most 

height of lattice H times number of nodes n: k 
= O(nH)
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Solution quality
• MOP is best possible solution:

�all paths p Fp1(Fp2(Fp3(…)))
• Does iterative analysis

xi = Fi(�j ∈ pred[i] xj)
produce the MOP solution?

• Flow functions must distribute over the meet 
operator:

�i F(xi) = F(�i xi)
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Reaching definitions
• L is all sets of defining nodes in call flow 

graph. Maximum information means smallest 
possible lists of reaching definitions, so:

• Top (�) is the empty set { }, meet (�) is set 
union (�)

xn = out[n]

Fn(x) = gen[n] ∪ (x – kill[n])

in[n] = �n’ ∈ prev[n] out[n’]
out[n] = gen[n] ∪ (in[n] - kill[n])

xi = Fi(�j ∈ pred[i] xj)
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Monotonic?
Fn(x) = gen[n] ∪ (x – kill[n])

x1 � x2 = x1 ∪ x2

• Is Fn(x) monotonic?

If x � y,   x ⊇ y 

Fn(x) =  gen[n] ∪ (x – kill[n]) =

gen[n] ∪ ((x ∪ y) – kill[n]) =

gen[n] ∪ (x – kill[n]) ∪ (y – kill[n]) ⊇ Fn(y)
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MOP?
Fn(x) = gen[n] ∪ (x – kill[n])

x1 � x2 = x1 ∪ x2

• Does Fn(x) distribute over � ?
Fn(x � y ) = Fn(x ∪ y)
= gen[n] ∪ ((x ∪ y) – kill[n])
= (gen[n] ∪ (x – kill[n]))

∪ (gen[n] ∪ (y – kill[n]))
= Fn(x) ∪ Fn(y) = Fn(x) � Fn(y)

∴ Iterative analysis always terminates, finds the 
best possible (meet-over-paths) solution to 
reaching defintions
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Other analyses
• Live variables

Fn(l) = use[n] � (l – def [n])

� = �

• Available expressions

Fn(l) = gen[n] � (l – kill[n])

� = �

• Computes MOP solutions?
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Summary
• Standard optimizations require data-

flow analyses that fit into data-flow 
analysis framework

• Iterative analysis finds solution if flow 
function monotonic in �, combining 
function � defines semi-lattice

• Solution is MOP if distribution 

condition �i F(xi) = F(�i xi) holds


