CS 412/413

Introduction to
Compilers and Translators
Andrew Myers
Cornell University
Lecture 27: Dataflow analysis theory 5 April 00

Administration

- Homework 4 due Monday
- Prelim review April 11, 7-9PM
- Prelim April 13, 7:30pm-9:30pm
- static semantics, IR and assembly code generation, object-oriented languages, data-flow analysis, optimization

Dataflow analysis framework

Dataflow analysis characterized by:

1. Space of values L
2. Flow function F_{n} for every noden out[n] $=\mathrm{F}_{\mathrm{n}}(\mathrm{in}[\mathrm{n}])$
$\mathrm{F}_{\mathrm{n}}: \mathrm{L} \rightarrow \mathrm{L}$

"If $\mathrm{l} \in \mathrm{L}$ is true before executing node $\mathrm{n}, \mathrm{F}_{\mathrm{n}}(\mathrm{l})$ is true afterward"
Live vars: $\mathrm{F}_{\mathrm{n}}(\mathrm{l})=\mathrm{use}[\mathrm{n}] \cup(\mathrm{l}-\operatorname{def}[\mathrm{n}])$
CS 412/413 Spring '00 Lecture 27 -- Andrew Myers

Iterative analysis

1. Space of values L
2. Flow function F_{n} for every noden
3. Combining operator \sqcap
"If we know either l_{1} or l_{2} holds on entry to n , we know at $\operatorname{mostl}_{1} \sqcap \mathrm{l}_{2}{ }^{\prime \prime}$
$\operatorname{in}[\mathrm{n}]=\prod_{\mathrm{n}^{\prime} \in \operatorname{pred}[\mathrm{n}]}$ out[$\left.\mathrm{n}^{\prime}\right]$
live vars: $\sqcap=\cup$ avail exprs: $\sqcap=\cap$
CS 412/413 Spring '00 Lecture 27-- Andrew Myers

5

Questions

Will iterative analysis

- produce a solution when it terminates?
- produce the best solution possible?
- terminate?
- Depends on properties of $\mathrm{L}, \mathrm{F}_{\mathrm{n}}, \sqcap$

CS 412/413 Spring '00 Lecture 27-- Andrew Myers

Partial orders

- L is a partial order defined by ordering operator \sqsubseteq
- Some elements are incomparable
- Properties of a partial order

$$
\begin{array}{cc}
\mathrm{x} \sqsubseteq \mathrm{x} & \text { (reflexive) } \\
\mathrm{x} \sqsubseteq \mathrm{y} \& \mathrm{y} \sqsubseteq \mathrm{z} \Rightarrow \mathrm{x} \sqsubseteq \mathrm{z} & \text { (transitive) } \\
\mathrm{x} \sqsubseteq \mathrm{y} \& \mathrm{y} \sqsubseteq \mathrm{x} \Rightarrow \mathrm{x}=\mathrm{y} & \text { (anti-symmetry) }
\end{array}
$$

- Examples: integers ordered by \leq, types ordered by <<, sets ordered by \subseteq or \supseteq.

Greatest lower bound

- Combining operator $l_{1} \sqcap \mathrm{l}_{2}$ gives element l such that $1 \sqsubseteq l_{1}, 1 \sqsubseteq l_{2}$
- l is a lower bound for l_{1}, l_{2}
- Want greatest such element (most info): greatest lower bound (GLB)
- Partial order with GLB/ meet (\square) and $\mathrm{LUB} / \mathrm{join}(\mathrm{H})$ is a lattice
- With only GLB, a lower semi-lattice

L as partial order

- Best solution has as much information as possible - allows most optimization - Live variables: smallest possible set
- Available expressions: largest possible set
- Some dataflow values contain more information: $l_{1} \sqsubseteq l_{2}$ if l_{2} has more information than 1_{1}
- Live variables: $\mathrm{l}_{1} \sqsubseteq \mathrm{l}_{2} \Leftrightarrow \mathrm{l}_{1} \supseteq \mathrm{l}_{2}$
- Available expressions: $\mathrm{l}_{1} \sqsubseteq \mathrm{l}_{2} \Leftrightarrow \mathrm{l}_{1} \subseteq \mathrm{l}_{2}$ cs 412/413 Spring '00 Lecture 27-- Andrew Myers

Example: subsets of $\{a, b, c\}$

Meet-over-paths solution

- Consider a traversal of flowgraph visiting nodes $\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{n}$
- Assume l_{0} is initial information
- Information known is
$\mathrm{F}_{\mathrm{n}}\left(\ldots\left(\mathrm{F}_{\mathrm{c}}\left(\mathrm{F}_{\mathrm{b}}\left(\mathrm{F}_{\mathrm{a}}\left(\mathrm{l}_{0}\right)\right)\right)\right)\right.$
- Best possible solution is 1 such that
$l \sqsubseteq \mathrm{~F}_{\mathrm{n}}\left(\ldots\left(\mathrm{F}_{\mathrm{c}}\left(\mathrm{F}_{\mathrm{b}}\left(\mathrm{F}_{\mathrm{a}}\left(\mathrm{l}_{0}\right)\right)\right)\right)\right.$ for all paths a, b, c, \ldots, n
- MOP soln: $\prod_{\text {all paths } p} \mathrm{~F}_{\mathrm{p} 1}\left(\mathrm{~F}_{\mathrm{p} 2}\left(\mathrm{~F}_{\mathrm{p} 3}(\ldots)\right)\right)$

CS 412/413 Spring '00 Lecture 27-- Andrew Myers 12

Data-flow equations

- Algorithm repeatedly recomputes each out[n] as

$$
\mathrm{F}_{\mathrm{n}}\left(\Gamma_{\mathrm{n}^{\prime} \in \operatorname{pred}[n]} \text { out }\left[\mathrm{n}^{\prime}\right]\right)
$$

- Let $\mathrm{x}_{1} . \mathrm{x}_{\mathrm{n}}$ be out[1]...out[n]. Algorithm:

$$
\mathrm{x}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}}\left(\sqcap_{\mathrm{j} \in \operatorname{pred}[\mathrm{i}]} \mathrm{x}_{\mathrm{j}}\right)
$$

- Solution is point in $\mathrm{L}^{\mathrm{n}}: \mathbf{X}=\left(\mathrm{x}_{1}, . . \mathrm{x}_{\mathrm{n}}\right)$
- Total set of equations is $\mathbf{X}=F(\mathbf{X})$ where $F\left(\mathrm{x}_{1}, . . \mathrm{x}_{\mathrm{n}}\right)=\left(\mathrm{F}_{1}\left(\Gamma_{\mathrm{j} \in \operatorname{pred}[1]} \mathrm{x}_{\mathrm{j}}\right), \mathrm{F}_{2}(\ldots), \ldots\right)$

Monotonicity

- Flow functions map lattice values to other lattice values; must be monotonic
- Monotonicity:
$\mathrm{l}_{1} \sqsubseteq \mathrm{l}_{2} \Rightarrow \mathrm{~F}\left(\mathrm{l}_{1}\right) \sqsubseteq \mathrm{F}\left(\mathrm{l}_{2}\right)$
"If you have more information entering a node, you have at least as much leaving"
- Example: reaching definitions. Lattice is all sets of defining nodes ordered by subset relation:

$$
\underset{\text { CS } 412 / 413 \text { Spring 'oo Lecture 27--Andrew Myers }}{\mathrm{F}_{\mathrm{n}}(\mathrm{x})}=\operatorname{gen}[\mathrm{n}] ~(\mathrm{x}-\operatorname{kill}[\mathrm{n}])
$$

Solution quality

- MOP is best possible solution:

$$
\Pi_{\text {all paths } \mathrm{p}} \mathrm{~F}_{\mathrm{p} 1}\left(\mathrm{~F}_{\mathrm{p} 2}\left(\mathrm{~F}_{\mathrm{p} 3}(\ldots)\right)\right)
$$

- Does iterative analysis

$$
\mathrm{x}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}}\left(\square_{\mathrm{j} \in \operatorname{pred}[\mathrm{i}]} \mathrm{x}_{\mathrm{j}}\right)
$$

produce the MOP solution?

- Flow functions must distribute over the meet operator:

$$
\prod_{\mathrm{i}} \mathrm{~F}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{F}\left(\prod_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)
$$

CS 412/413 Spring '00 Lecture 27-- Andrew Myers

Reaching definitions

- L is all sets of defining nodes in call flow graph. Maximum information means smallest possible lists of reaching definitions, so:
- Top (T) is the empty set $\}$, meet (\square) is set union (\cup)
$\mathrm{x}_{\mathrm{n}}=$ out[n$]$
$\mathrm{F}_{\mathrm{n}}(\mathrm{x})=\operatorname{gen}[\mathrm{n}] \cup(\mathrm{x}-\operatorname{kill}[\mathrm{n}])$

CS 412/413 Spring '00 Lecture 27-- Andrew Myers

$$
\begin{gathered}
\text { Monotonic? } \\
\mathrm{F}_{\mathrm{n}}(\mathrm{x})=\operatorname{gen}[\mathrm{n}] \cup(\mathrm{x}-\operatorname{kill}[\mathrm{n}]) \\
\mathrm{x}_{1} \sqcap \mathrm{x}_{2}=\mathrm{x}_{1} \cup \mathrm{x}_{2}
\end{gathered}
$$

- Is $\mathrm{F}_{\mathrm{n}}(\mathrm{x})$ monotonic?

If $x \subseteq y, x \supseteq y$
$\mathrm{F}_{\mathrm{n}}(\mathrm{x})=\operatorname{gen}[\mathrm{n}] \cup(\mathrm{x}-\operatorname{kill}[\mathrm{n}])=$
$\operatorname{gen}[n] \cup((x \cup y)-\operatorname{kill}[n])=$
$\operatorname{gen}[n] \cup(x-\operatorname{kill}[n]) \cup(y-\operatorname{kill}[n]) \supseteq F_{n}(y)$

Other analyses

- Live variables

$$
\begin{gathered}
\mathrm{F}_{\mathrm{n}}(\mathrm{l})=\mathrm{use}[\mathrm{n}] \cup(\mathrm{l}-\operatorname{def}[\mathrm{n}]) \\
\square=\cup
\end{gathered}
$$

- Available expressions

$$
\begin{gathered}
\mathrm{F}_{\mathrm{n}}(\mathrm{l})=\operatorname{gen}[\mathrm{n}] \cup(\mathrm{l}-\mathrm{kill}[\mathrm{n}]) \\
\square=\cap
\end{gathered}
$$

- Computes MOP solutions?

