
1

CS 412/413
Introduction to

Compilers and Translators
Andrew Myers

Cornell University

Lecture 26: Dataflow analyses
3 April 00

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 2

Need for dataflow analysis
• Most optimizations require

program analysis to determine
safety

• This lecture: dataflow analysis

• Standard program analysis
framework

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 3

Dataflow analyses

• Live variable analysis — register
allocation, dead-code elimination

• Reaching definitions: what points in
program does each variable definition
reach? — copy, constant propagation

• Available expressions: which
expressions computed earlier still have
same value? — common sub-expression
elimination

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 4

IR for data-flow analysis
• Tree IR: good for instruction selection,

bad for data-flow analysis

• Can flatten tree representation into
simple nodes (a,b,c temps, labels L)

MOVE(a, OP(b,c)) a = b OP c
MOVE(a, MEM(b)) a = [b]
MOVE(MEM(a), b) [a] = b
JUMP(L) goto L
CJUMP(a,L1,L2) if a goto L1 else L2
LABEL(L) L:
MOVE(a, CALL(f,…)) a = f(…)
EXP(a, CALL(f,…)) f(…) Quadruples

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 5

IR optimization

Canonical IR

Abstract assembly

Quadruples

Quadruples

instruction
selection

convert to flowgraph
of quadruples

analyze,
optimize

convert to
tree form

Assembly code

register
allocation analyze,

optimize
CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 6

Converting to quadruples
• Conversion is tree simplification that

aggressively adds new temporaries

MOVE
a +

*b
c a

a = b + (c * a) t = c * a
a = b + t

MOVE
t *

c a

MOVE
a +

b t

2

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 7

Converting back to tree
• Convert quadruples to simple trees
• Look for temporaries in statement

sequence used and defined only once
• Move definition just before use
• Glue tree, eliminating temporary

• Requires dataflow analyses to do right
(reaching definitions, available expressions)

t = c * a
…

a = b + t
MOVE(a, +(b,*(c,a)))

MOVE(t, *(c,a))
…

MOVE(a, +(b,t))

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 8

Control flow graph
• Simplification: generate quadruples directly,

reconstruct trees from quadruples later for
instruction selection

• Quadruple sequence is control flow graph
(flowgraph)

• Nodes in graph: quadruples (not assembly
statements)

• Edges in graph: ways to transfer control
between quadruples (including fall-through)

• For node n, use[n] is variables used, def[n] is
variables defined (assigned)

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 9

Def & Use
n def[n] use[n]

a = b OP c a b,c
a = [b] a b
[a] = b a, b
goto L
if a goto L1 else goto L2 a
L:
a = f(…) a …
f(…) …

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 10

Live variable analysis
• Useful even for IR: dead code elimination

• Output: in[n] and out[n] associated with
every node n in flowgraph

• Constraints:

in[n] ⊇ use[n]
in[n] ∪ def [n] ⊇ out[n]
out[n] ⊇ in[n’] for all successors n’ of n

• Dataflow equations:
in[n] = use[n] ∪ (out[n] – def[n])
out[n] = �n’ in[n’]

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 11

Reaching definitions analysis
• Question: what uses in program does a given

variable definition reach?
• Used for constant propagation, copy

propagation
– if only one definition reaches a particular use, can

replace use by definition
– copy propagation requires that copied value still

has same value – use available expressions

• Input: flowgraph
• Output: in[n], out[n] is set of nodes defining

some variable such that defn may reach
beginning, end of n

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 12

Reaching definitions
b = a + 2

c = b*b

b = c + 1

return b*a

W

X

Y

Z

out: W

in: W

out: X, W

in: X, W

out: X, Y

in: X, Y

3

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 13

Gen, kill
• Define: defs(x) is set of nodes defining var x
• Define: gen[n], kill[n]

n gen[n] kill[n]

a = b OP c { n } defs(a) – { n }
a = [b] { n } defs(a) – { n }
[a] = b { } { }
goto L { } { }
if a goto L1 else goto L2 { } { }
L: { } { }
a = f(…) { n } defs(a) – { n }
f(…) { } { }

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 14

Solution Constraints
out[n] ⊇ gen[n]

“A definition made by n at least reaches n’s
output”

in[n’] ⊇ out[n] (if n’ is succ. of n)
“definitions reach node n’ if they exit any
predecessor n”

out[n] ∪ kill[n] = in[n]

“A definition that reaches the input either
reaches the output or is killed”

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 15

Data-flow equations
in[n’] = �n ∈ prev[n’] out[n]

out[n] = gen[n] ∪ (in[n] – kill[n])
• Algorithm: init in[n], out[n] with empty sets,

apply equations as assignments until no
progress (usual representation: bit vector)

• Eventually all equations satisfied
• Will terminate because in[n], out[n] can only

grow, can be no larger than set of all defns
• Finds minimal solution to constraint eqns:

accurate

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 16

Def-use chains
• Reaching definitions tells which nodes a

def can reach

• If node uses same variable, definition
affects node (conservatively)

• Def-use (du-) chain: def node + all
nodes with affected uses

• Use-def (ud-) chain: use node + all
nodes with defs that might affect use

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 17

du-, ud-chains
b = a + 2

c = b*b

b = c + 1

return a*b*c

W

X

Y

Z

out: W

in: W

out: X, W

in: X, W

out: X, Y

in: X, Y

DU
b:(W→ X), (Y→Z)

c: (X→Y, Z)

UD
b: (X←W), (Z←Y)
c: (Y←X), (Z←X)

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 18

Webs
• du-chain, ud-chain intersect if share

some use or definition

• web : maximal set of intersecting du,
ud-chains
– disjoint set union algorithm with path

compression: nearly linear

• Same variable may comprise multiple
non-interacting webs: permits more
optimization

4

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 19

Webs
• Register allocation by webs avoids false

conflicts
int i;
for (i = 0; i<n; i++) { … }
…
for (i = 0; i<n; i++) { … }

• Two different webs: can allocate i to two
different registers

no use/def pairs!

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 20

Register allocation
1. use reaching definitions to compute

all related uses and defs
2. compute distinct webs, rename all

temporaries to web names
3. run live variable analysis
4. temporaries conflict if one is live

when another is def’d (or both live on
input)

5. Run graph coloring algorithm of
previous lecture to allocate registers

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 21

Forward vs. Backward
• Liveness: backward analysis

in[n] = use[n] ∪ (out[n] – def [n])
out[n] = �n’∈ succ[n] in[n’]

• Reaching definitions: forward
analysis

out[n] = gen[n] ∪ (in[n] – kill[n])
in[n’] = �n ∈ prev[n’] out[n]

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 22

Dataflow analysis
• Most dataflow analyses

characterized simply by
–forward vs. backward analysis
–gen[n]
–kill[n]
–Use of intersection vs. union when

combining data from several nodes
out[n] = gen[n] ∪ (in[n] – kill[n])

in[n’] = �n ∈ prev[n’] out[n]

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 23

Available expressions
• Idea: want to perform common

subexpression elimination

• Transformation is safe if original
x+1 is available

a = x+1
…

b = x+1

a = x+1
…

b = a

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 24

Dataflow values
• Let in[n], out[n] be sets of nodes whose

computed expression is available at n
n gen[n] kill[n]

a=b OP c {n} – kill[n] uses(a)

a=[b] {n} – kill[n] uses(a)

[a]=b {} uses([x]) (for all x
that may be equal to a)

a=f(b1,…bn) {} uses([x]) (for all x)

other {} {}

5

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 25

Constraints
out[n] ⊇ gen[n]

“An expression made available by n at least
reaches n’s output”

in[n’] ⊆ out[n] (if n’ is succ. of n)
“An expression is available at n’ only if it is
available at every predecessor n”

out[n] ∪ kill[n] ⊇ in[n]

“An expression available on input is either
available on output or killed”

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 26

Dataflow equations
out[n] ⊇ gen[n]
in[n’] ⊆ out[n] (if n’ is succ. of n)
out[n] ∪ kill[n] ⊇ in[n]

Equations for iterative solution:
out[n] = gen[n] ∪ (in[n] – kill[n])
in[n’] = ∩n ∈ pred[n’] out[n]

�=∩ Starting condition:
in[n] is set of all nodes
in[start]= {}

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 27

Summary
• Tree IR makes dataflow more

difficult
• Saw reaching definitions, available

expressions analyses
• How to use reaching definitions for

better register allocations via webs
• Next time: a theory to explain why

iterative solving works

