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Need for dataflow analysis
• Most optimizations require 

program analysis to determine 
safety

• This lecture: dataflow analysis

• Standard program analysis 
framework
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Dataflow analyses

• Live variable analysis — register 
allocation, dead-code elimination

• Reaching definitions: what points in 
program does each variable definition 
reach? — copy, constant propagation

• Available expressions: which 
expressions computed earlier still have 
same value? — common sub-expression 
elimination

CS 412/413 Spring '00 Lecture 26 -- Andrew Myers 4

IR for data-flow analysis
• Tree IR: good for instruction selection, 

bad for data-flow analysis

• Can flatten tree representation into 
simple nodes (a,b,c temps, labels L)

MOVE(a, OP(b,c)) a = b OP c
MOVE(a, MEM(b)) a = [b]
MOVE(MEM(a), b) [a] = b
JUMP(L) goto L
CJUMP(a,L1,L2) if a goto L1 else L2
LABEL(L) L:
MOVE(a, CALL(f,…))   a = f(…)
EXP(a, CALL(f,…)) f(…) Quadruples
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IR optimization

Canonical IR

Abstract assembly

Quadruples

Quadruples

instruction
selection

convert to flowgraph
of quadruples

analyze,
optimize

convert to
tree form

Assembly code

register
allocation analyze,

optimize
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Converting to quadruples
• Conversion is tree simplification that 

aggressively adds new temporaries

MOVE
a +

*b
c a

a = b + (c * a) t = c * a
a = b + t

MOVE
t *

c a

MOVE
a +

b t
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Converting back to tree
• Convert quadruples to simple trees
• Look for temporaries in statement 

sequence used and defined only once
• Move definition just before use
• Glue tree, eliminating temporary

• Requires dataflow analyses to do right 
(reaching definitions, available expressions)

t = c * a
…

a = b + t
MOVE(a, +(b,*(c,a)))

MOVE(t, *(c,a))
…

MOVE(a, +(b,t))
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Control flow graph
• Simplification: generate quadruples directly, 

reconstruct trees from quadruples later for 
instruction selection

• Quadruple sequence is control flow graph 
(flowgraph)

• Nodes in graph: quadruples (not assembly 
statements)

• Edges in graph: ways to transfer control 
between quadruples (including fall-through)

• For node n, use[n] is variables used, def[n] is 
variables defined (assigned)
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Def & Use
n def[n] use[n]

a = b OP c a b,c
a = [b] a b
[a] = b a, b
goto L
if a goto L1 else goto L2 a
L:
a = f(…) a …
f(…) …
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Live variable analysis
• Useful even for IR: dead code elimination

• Output: in[n] and out[n] associated with 
every node n in flowgraph

• Constraints:

in[n] ⊇ use[n]
in[n] ∪ def [n] ⊇ out[n]
out[n]  ⊇ in[n’]   for all successors n’ of n

• Dataflow equations:
in[n] = use[n] ∪ (out[n] – def[n])
out[n] = �n’ in[n’]
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Reaching definitions analysis
• Question: what uses in program does a given 

variable definition reach?
• Used for constant propagation, copy 

propagation
– if only one definition reaches a particular use, can 

replace use by definition
– copy propagation requires that copied value still 

has same value – use available expressions

• Input: flowgraph
• Output: in[n], out[n] is set of nodes defining 

some variable such that defn may reach 
beginning, end of n
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Reaching definitions
b = a + 2

c = b*b

b = c + 1

return b*a

W

X

Y

Z

out: W

in: W

out: X, W

in: X, W

out: X, Y

in: X, Y
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Gen, kill
• Define: defs(x) is set of nodes defining var x
• Define: gen[n], kill[n]

n gen[n] kill[n]

a = b OP c { n } defs(a) – { n }
a = [b] { n } defs(a) – { n }
[a] = b { } { }
goto L { } { }
if a goto L1 else goto L2 { } { }
L: { } { }
a = f(…) { n } defs(a) – { n }
f(…) { } { }
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Solution Constraints
out[n] ⊇ gen[n]

“A definition made by n at least reaches n’s
output”

in[n’] ⊇ out[n] (if n’ is succ. of n)
“definitions reach node n’ if they exit any 
predecessor n”

out[n] ∪ kill[n] = in[n]

“A definition that reaches the input either 
reaches the output or is killed”
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Data-flow equations
in[n’] = �n ∈ prev[n’] out[n]

out[n] = gen[n] ∪ (in[n] – kill[n])
• Algorithm: init in[n], out[n] with empty sets, 

apply equations as assignments until no 
progress (usual representation: bit vector)

• Eventually all equations satisfied
• Will terminate because in[n], out[n] can only 

grow, can be no larger than set of all defns
• Finds minimal solution to constraint eqns: 

accurate
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Def-use chains 
• Reaching definitions tells which nodes a

def can reach

• If node uses same variable, definition 
affects node (conservatively)

• Def-use (du-) chain: def node + all 
nodes with affected uses

• Use-def (ud-) chain: use node + all  
nodes with defs that might affect use
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du-, ud-chains
b = a + 2

c = b*b

b = c + 1

return a*b*c

W

X

Y

Z

out: W

in: W

out: X, W

in: X, W

out: X, Y

in: X, Y

DU
b:(W→ X), (Y→Z)

c: (X→Y, Z)

UD
b: (X←W), (Z←Y)
c: (Y←X), (Z←X)
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Webs
• du-chain, ud-chain intersect if share 

some use or definition

• web : maximal set of intersecting du, 
ud-chains
– disjoint set union algorithm with path 

compression: nearly linear

• Same variable may comprise multiple 
non-interacting webs: permits more 
optimization
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Webs
• Register allocation by webs avoids false 

conflicts
int i;
for (i = 0; i<n; i++) { … }
…
for (i = 0; i<n; i++) { … }

• Two different webs: can allocate i to two 
different registers

no use/def pairs!
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Register allocation
1. use reaching definitions to compute 

all related uses and defs
2. compute distinct webs, rename all 

temporaries to web names
3. run live variable analysis
4. temporaries conflict if one is live 

when another is def’d (or both live on 
input)

5. Run graph coloring algorithm of 
previous lecture to allocate registers
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Forward vs. Backward
• Liveness: backward analysis

in[n] = use[n] ∪ (out[n] – def [n])
out[n] = �n’∈ succ[n] in[n’]

• Reaching definitions: forward 
analysis

out[n] = gen[n] ∪ (in[n] – kill[n])
in[n’] = �n ∈ prev[n’] out[n]
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Dataflow analysis
• Most dataflow analyses 

characterized simply by
–forward vs. backward analysis
–gen[n]
–kill[n]
–Use of intersection vs. union when 

combining data from several nodes
out[n] = gen[n] ∪ (in[n] – kill[n])

in[n’] = �n ∈ prev[n’] out[n]
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Available expressions
• Idea: want to perform common

subexpression elimination

• Transformation is safe if original 
x+1 is available

a = x+1
…

b = x+1

a = x+1
…

b = a
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Dataflow values 
• Let in[n], out[n] be sets of nodes whose 

computed expression is available at n
n gen[n] kill[n]

a=b OP c {n} – kill[n] uses(a)

a=[b] {n} – kill[n] uses(a)

[a]=b {} uses([x]) (for all x 
that may be equal to a)

a=f(b1,…bn) {} uses([x]) (for all x)

other {} {}
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Constraints
out[n] ⊇ gen[n]

“An expression made available by n at least 
reaches n’s output”

in[n’] ⊆ out[n] (if n’ is succ. of n)
“An expression is available at n’ only if it is 
available at every predecessor n”

out[n] ∪ kill[n] ⊇ in[n]

“An expression available on input is either 
available on output or killed”
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Dataflow equations
out[n] ⊇ gen[n]
in[n’] ⊆ out[n] (if n’ is succ. of n)
out[n] ∪ kill[n] ⊇ in[n]

Equations for iterative solution:
out[n] = gen[n] ∪ (in[n] – kill[n])
in[n’] =  ∩n ∈ pred[n’] out[n]

�=∩ Starting condition:
in[n] is set of all nodes
in[start]= {}
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Summary
• Tree IR makes dataflow more 

difficult
• Saw reaching definitions, available 

expressions analyses
• How to use reaching definitions for 

better register allocations via webs
• Next time: a theory to explain why 

iterative solving works


