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Administration
• Programming Assignment 3 is 

graded

• Programming Assignment 4
due Friday, March 31

• Optional reading: Muchnick 11
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Optimization
• This course covers the most 

valuable and straightforward 
optimizations – much more to 
learn!

• Muchnick (optional text) has 10 
chapters of optimization techniques
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Goal of optimization
• Help programmers

– clean, modular, high-level source code

– compile to assembly-code performance

• Optimizations are code transformations
– must be safe; can’t change meaning of 

program

• Different kinds of optimization:
– space optimization: reduce memory use

– time optimization: reduce execution time
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Where to optimize?
• Usual goal: improve time performance
• Problem: many optimizations trade off space 

versus time
• Example: loop unrolling

– Increasing code space slows program down a little, 
speeds up one loop

– Frequently executed code with long loops: 
space/time tradeoff is generally a win

– Infrequently executed code: may want to optimize 
code space at expense of time

• Complex optimizations may never pay off!
• Want to optimize program hot spots
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Safety
• Opportunity for loop-invariant code motion:

while (b) {
z = y/x; // x, y not assigned in loop
…

}
• Hoist invariant code out of loop:

z = y/x;
while (b) {

…
}

• Easy: code transformation
• Hard: ensuring safety of transformation
• Harder: ensuring performance improvement

Safe?
Faster?

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 8

Writing fast programs in practice
• Pick the right algorithms and data 

structures: reduce operations, memory 
usage, indirections

• Turn on optimization and profile to 
figure out program hot spots

• Evaluate whether design works; if so…
• Tweak source code until optimizer does 

“the right thing” to machine code
• Need to understand why optimizers do 

what they do
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Structure of an optimization
• Optimization is a code transformation

• Applied at some stage of compiler (HIR, 
MIR, LIR)

• In general requires some analysis:
– safety analysis to determine where 

transformation does not change meaning 
(e.g. live variable analysis)

– cost analysis to determine where it ought to 
speed up code (e.g. which variable to spill)
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When to apply optimization
AST

Canonical
IR

IR

Abstract
Assembly

Assembly

HIR

MIR

LIR

Inlining
Specialization
Constant folding
Constant propagation
Value numbering
Dead code elimination
Loop-invariant code motion
Common sub-expression elimination
Strength reduction
Constant folding & propagation
Branch prediction/optimization
Register allocation
Loop unrolling
Cache optimization
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Why do we need optimization
• Programmers don’t always write optimal code 

– can recognize ways to improve code (e.g. 
avoid recomputing same expression)

• High-level language may make avoiding 
redundant computation inconvenient or 
impossible

a[ i ][ j ] = a[ i ][ j ] + 1
• Architectural independence
• Modern architectures assume optimization –

too hard to optimize by hand 
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Register allocation
• Goal: convert abstract assembly (infinite no. of 

registers) into real assembly (6 registers)

mov t1, t2
add t1, [bp–4]
mov t3, [bp-8]

mov t4, t3
cmp t1, t4

• Need to reuse registers aggressively (e.g., bx)

• Want to coalesce registers (t3, t4) to eliminate mov’s

• May be impossible without spilling to stack

mov ax, bx
add ax, [bp-4]
mov bx, [bp–8]

cmp ax, bx
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Constant folding
• Idea: if operands are known at compile 

time, evaluate at compile time.
int x = (2 + 3)*y; � int x = 5*y;
b & false � false

• Performed at various stages during 
compilation as constant expressions are 
created (by translation or optimization)

a[2] � MEM(MEM(a) + 2*4)
� MEM(MEM(a) + 8)
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Constant folding conditionals

if (true) S � S
if (false) S � ;
if (true) S else S’ � S
if (false) S else S’ � S’
while (false) S � ;

if (2 > 3) S � ;
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Algebraic simplification
• More general form of constant folding: take 

advantage of usual simplification rules

a * 1 � a a * 0 � 0
a + 0 � a
(a + 1) + 2 � a + (1 + 2) � a +3
a * 4 � a shl 2 a * 7 � (a shl 3) — a
b | false � b b & true � b
a / 32767 � a shr 15 + a shr 30

• Must be careful with floating point!
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Unreachable code elimination
• Basic blocks not contained by any 

trace leading from starting basic 
block are unreachable and can be 
eliminated

• Performed at canonical IR or 
assembly code levels
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Inlining
• Replace a call to a function with the 

body of the function itself with args:
g(x: int):int  = 1+ f(x);
f(a: int):int = ( b:int=1; n:int = 0;

while (n<a) (b = 2*b); b )

� g(x:int):int = 1 + (a:int = x; ( b:int=1; n:int = 0;

while (n<a) ( b = 2*b); b ))

• May need to rename variables to avoid name 
capture -- consider if f refers to a global var x

• Can inline methods, but more difficult
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Specialization
• Idea: create specialized versions of functions 

(or methods) that are called from different 
places w/ different args
class A implements I { m( ) {…} }
class B implements I { m( ) {…} }
f(x: I) { x.m( ); } // don’t know which m
a = new A(); f(a) // know A.m
b = new B(); f(b) // know B.m

• Can inline methods when implementation is 
known

• Impl known if only one implementing class
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Constant propagation
• If value of variable is known to be a 

constant, replace use of variable with 
constant

• Value of variable must be propagated 
forward from point of assignment
int x = 5;
int y = x*2;
int z = a[y]; // = MEM(MEM(a) + y*4)

• For full effect, interleave w/ constant 
folding
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Dead code elimination
• If side-effect of a statement can never be 

observed, can eliminate the statement
x = y*y; // dead!
…  // x unused …
x = z*z; x = z*z;

• Variable is dead if never used after defn.
int i;
while (m<n) ( m++; i = i+1) while (m<n) (m++)

• Other optimizations will create dead 
statements, variables
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Copy propagation
• Given assignment x = y, replace 

subsequent uses of x with y
• May make x a dead variable, result 

in dead code

• Need to determine where copies of 
y propagate to
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Redundancy Elimination
• Common Subexpression Elimination 

folds redundant computations together
a[ i ] = a[ i ] + 1

[[a]+i*4] = [[a]+i*4] + 1
� t1 = [a] + i*4; [t1] = [t1]+1
• Need to determine that expression 

always has same value in both places
b[j]=a[i]+1; c[k]=a[i] � t1=a[i]; b[j]=t1+1; c[k]=t1  ?
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Loops
• Program hot spots are usually loops 

(exceptions: OS kernels, compilers)

• Most execution time in most programs 
is spent in loops: 90/10 is typical

• Many different loop optimizations exist
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Loop-invariant code motion
• Another form of redundancy elimination

• If result of a statement or expression does not 
change during loop, and it has no externally-
visible side-effect (!), can hoist its 
computation before loop

• Often useful for array element addressing 
computations – invariant code not visible at 
source level

• Requires analysis to identify loop-invariant 
expressions
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Example
for (i = 0; i < a.length; i++) {

// a not assigned in loop
}

t1 = a.length ;
for (i = 0; i < t1; i++) {

…
}

loop-invariant expression
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Strength reduction
• Replaces expensive operations 

(multiplies, divides) by cheap ones 
(adds, subtracts) by creating dependent 
induction variable

for (int i = 0; i < n; i++) {
a[i*3] = 1;

} int j = 0;
for (int i = 0; i < n; i++) {

a[ j ] = 1; j = j+3;
}
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Loop unrolling
• Branches are expensive; unroll loop to 

avoid them
for (i = 0; i< n; i++) { S }

for (i = 0; i < n-3; i+=4) {S; S; S; S; }
for (      ; i < n; i++) S;

• Gets rid of ¾ of conditional branches!
• Space-time tradeoff: not a good idea for 

large S or small n.
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Summary
• Many useful optimizations that can 

transform code to make it faster

• Whole is greater than sum of parts: 
optimizations should be applied 
together, sometimes more than once, at 
different levels

• Problem: when are optimizations are 
safe?

���� Dataflow analysis


