
1

CS412/413

Introduction to

Compilers and Translators
Andrew Myers

Cornell University

Lecture 23: Introduction to Optimization

27 Mar 00
CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 2

Administration
• Programming Assignment 3 is

graded

• Programming Assignment 4
due Friday, March 31

• Optional reading: Muchnick 11

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 3

Optimization
• This course covers the most

valuable and straightforward
optimizations – much more to
learn!

• Muchnick (optional text) has 10
chapters of optimization techniques

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 4

How fast can you go?

0.1

1

10

100

1000

10000

simple code generation (PA3, JIT)

register allocation
local optimization global optimization

naïve assembly code
expert assembly code

bytecode interpreters (Java, Perl 5)
threaded interpreters

call-threaded interpreters (FORTH)

AST interpreters (Perl 4)

tokenized program interpreters (BASIC, Tcl)

source code interpreters

2000

2005

2010

2015

2020

2001
2002

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 5

Goal of optimization
• Help programmers

– clean, modular, high-level source code

– compile to assembly-code performance

• Optimizations are code transformations
– must be safe; can’t change meaning of

program

• Different kinds of optimization:
– space optimization: reduce memory use

– time optimization: reduce execution time

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 6

Where to optimize?
• Usual goal: improve time performance
• Problem: many optimizations trade off space

versus time
• Example: loop unrolling

– Increasing code space slows program down a little,
speeds up one loop

– Frequently executed code with long loops:
space/time tradeoff is generally a win

– Infrequently executed code: may want to optimize
code space at expense of time

• Complex optimizations may never pay off!
• Want to optimize program hot spots

2

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 7

Safety
• Opportunity for loop-invariant code motion:

while (b) {
z = y/x; // x, y not assigned in loop
…

}
• Hoist invariant code out of loop:

z = y/x;
while (b) {

…
}

• Easy: code transformation
• Hard: ensuring safety of transformation
• Harder: ensuring performance improvement

Safe?
Faster?

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 8

Writing fast programs in practice
• Pick the right algorithms and data

structures: reduce operations, memory
usage, indirections

• Turn on optimization and profile to
figure out program hot spots

• Evaluate whether design works; if so…
• Tweak source code until optimizer does

“the right thing” to machine code
• Need to understand why optimizers do

what they do

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 9

Structure of an optimization
• Optimization is a code transformation

• Applied at some stage of compiler (HIR,
MIR, LIR)

• In general requires some analysis:
– safety analysis to determine where

transformation does not change meaning
(e.g. live variable analysis)

– cost analysis to determine where it ought to
speed up code (e.g. which variable to spill)

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 10

When to apply optimization
AST

Canonical
IR

IR

Abstract
Assembly

Assembly

HIR

MIR

LIR

Inlining
Specialization
Constant folding
Constant propagation
Value numbering
Dead code elimination
Loop-invariant code motion
Common sub-expression elimination
Strength reduction
Constant folding & propagation
Branch prediction/optimization
Register allocation
Loop unrolling
Cache optimization

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 11

Why do we need optimization
• Programmers don’t always write optimal code

– can recognize ways to improve code (e.g.
avoid recomputing same expression)

• High-level language may make avoiding
redundant computation inconvenient or
impossible

a[i][j] = a[i][j] + 1
• Architectural independence
• Modern architectures assume optimization –

too hard to optimize by hand

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 12

Register allocation
• Goal: convert abstract assembly (infinite no. of

registers) into real assembly (6 registers)

mov t1, t2
add t1, [bp–4]
mov t3, [bp-8]

mov t4, t3
cmp t1, t4

• Need to reuse registers aggressively (e.g., bx)

• Want to coalesce registers (t3, t4) to eliminate mov’s

• May be impossible without spilling to stack

mov ax, bx
add ax, [bp-4]
mov bx, [bp–8]

cmp ax, bx

3

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 13

Constant folding
• Idea: if operands are known at compile

time, evaluate at compile time.
int x = (2 + 3)*y; � int x = 5*y;
b & false � false

• Performed at various stages during
compilation as constant expressions are
created (by translation or optimization)

a[2] � MEM(MEM(a) + 2*4)
� MEM(MEM(a) + 8)

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 14

Constant folding conditionals

if (true) S � S
if (false) S � ;
if (true) S else S’ � S
if (false) S else S’ � S’
while (false) S � ;

if (2 > 3) S � ;

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 15

Algebraic simplification
• More general form of constant folding: take

advantage of usual simplification rules

a * 1 � a a * 0 � 0
a + 0 � a
(a + 1) + 2 � a + (1 + 2) � a +3
a * 4 � a shl 2 a * 7 � (a shl 3) — a
b | false � b b & true � b
a / 32767 � a shr 15 + a shr 30

• Must be careful with floating point!

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 16

Unreachable code elimination
• Basic blocks not contained by any

trace leading from starting basic
block are unreachable and can be
eliminated

• Performed at canonical IR or
assembly code levels

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 17

Inlining
• Replace a call to a function with the

body of the function itself with args:
g(x: int):int = 1+ f(x);
f(a: int):int = (b:int=1; n:int = 0;

while (n<a) (b = 2*b); b)

� g(x:int):int = 1 + (a:int = x; (b:int=1; n:int = 0;

while (n<a) (b = 2*b); b))

• May need to rename variables to avoid name
capture -- consider if f refers to a global var x

• Can inline methods, but more difficult

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 18

Specialization
• Idea: create specialized versions of functions

(or methods) that are called from different
places w/ different args
class A implements I { m() {…} }
class B implements I { m() {…} }
f(x: I) { x.m(); } // don’t know which m
a = new A(); f(a) // know A.m
b = new B(); f(b) // know B.m

• Can inline methods when implementation is
known

• Impl known if only one implementing class

4

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 19

Constant propagation
• If value of variable is known to be a

constant, replace use of variable with
constant

• Value of variable must be propagated
forward from point of assignment
int x = 5;
int y = x*2;
int z = a[y]; // = MEM(MEM(a) + y*4)

• For full effect, interleave w/ constant
folding

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 20

Dead code elimination
• If side-effect of a statement can never be

observed, can eliminate the statement
x = y*y; // dead!
… // x unused …
x = z*z; x = z*z;

• Variable is dead if never used after defn.
int i;
while (m<n) (m++; i = i+1) while (m<n) (m++)

• Other optimizations will create dead
statements, variables

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 21

Copy propagation
• Given assignment x = y, replace

subsequent uses of x with y
• May make x a dead variable, result

in dead code

• Need to determine where copies of
y propagate to

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 22

Redundancy Elimination
• Common Subexpression Elimination

folds redundant computations together
a[i] = a[i] + 1

[[a]+i*4] = [[a]+i*4] + 1
� t1 = [a] + i*4; [t1] = [t1]+1
• Need to determine that expression

always has same value in both places
b[j]=a[i]+1; c[k]=a[i] � t1=a[i]; b[j]=t1+1; c[k]=t1 ?

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 23

Loops
• Program hot spots are usually loops

(exceptions: OS kernels, compilers)

• Most execution time in most programs
is spent in loops: 90/10 is typical

• Many different loop optimizations exist

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 24

Loop-invariant code motion
• Another form of redundancy elimination

• If result of a statement or expression does not
change during loop, and it has no externally-
visible side-effect (!), can hoist its
computation before loop

• Often useful for array element addressing
computations – invariant code not visible at
source level

• Requires analysis to identify loop-invariant
expressions

5

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 25

Example
for (i = 0; i < a.length; i++) {

// a not assigned in loop
}

t1 = a.length ;
for (i = 0; i < t1; i++) {

…
}

loop-invariant expression

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 26

Strength reduction
• Replaces expensive operations

(multiplies, divides) by cheap ones
(adds, subtracts) by creating dependent
induction variable

for (int i = 0; i < n; i++) {
a[i*3] = 1;

} int j = 0;
for (int i = 0; i < n; i++) {

a[j] = 1; j = j+3;
}

CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 27

Loop unrolling
• Branches are expensive; unroll loop to

avoid them
for (i = 0; i< n; i++) { S }

for (i = 0; i < n-3; i+=4) {S; S; S; S; }
for (; i < n; i++) S;

• Gets rid of ¾ of conditional branches!
• Space-time tradeoff: not a good idea for

large S or small n.
CS 412/413 Spring '00 Lecture 23 -- Andrew Myers 28

Summary
• Many useful optimizations that can

transform code to make it faster

• Whole is greater than sum of parts:
optimizations should be applied
together, sometimes more than once, at
different levels

• Problem: when are optimizations are
safe?

���� Dataflow analysis

