CS 412/413
Introduction to Compilers and Translators
Andrew Myers
Cornell University

Lecture 28: Loop optimizations
7 April 00

Last time
Dataflow analysis framework:
1. Lattice of dataflow information values L with order \(\leq \), top \(\top \)
2. Monotonic flow functions \(F_n : L \rightarrow L \)
3. Meet (GLB) operator \(\sqcap \) on \(L \)

One-variable Const. Prop.

never defined constant constant \(c_1 \) constant \(c_2 \)
constant

multiple

Full lattice:

\(\top \)

... 3 2 1 0 1 2 3 ...

Constant propagation

• Idea: propagate and fold integer constants in one pass

x = 1;	x = 1;
y = 5 + x;	y = 6;
z = y * y;	z = 36;

• Information about a single variable:
 i. Variable never defined
 ii. Variable has single constant value
 iii. Variable has multiple values

Rest of defn.

• Flow function for \(x = x \text{ OP } c_i \):
 \(F_n(\top) = \top \)
 \(F_n(\bot) = \bot \)
 \(F_n(c_i) = c_i \text{ OP } c_i \)

• Flow function is monotonic: iterative solution works

• What about multiple variables \(x_1, \ldots, x_n \)? Want tuple \((v_1, \ldots, v_n) \),

Administration

• HW4 due Monday
• Prelim 2 next Thursday
• MMII graphical user interface package released for PA5
Multiple vars

- Dataflow value is a tuple \((v_1, \ldots, v_n)\), each \(v_i\) in lattice \(L=\)
- Set of tuples \((v_1, \ldots, v_n)\) is also a lattice!
 \((v_1, \ldots, v_n) \subseteq (v_1', \ldots, v_n')\) \(\Rightarrow\) \(v_i \subseteq v_i'\)
 \((v_1, \ldots, v_n) \cap (v_1', \ldots, v_n') = (v_1 \cap v_1', \ldots, v_n \cap v_n')\)
- For any two lattices \(L_1, L_2\), have product lattice \(L_1 \times L_2\) with component-wise ordering
 \((v_1, v_2) \subseteq (v_1', v_2')\) \(\Leftrightarrow\) \(v_1 \subseteq v_1'\) & \(v_2 \subseteq v_2'\)
- Is this really a lattice?
- Dataflow values are in \(L_1 \times \ldots \times L_n = L^n\)

Flow functions

- Consider \(x_1 = x_2 \op x_3\)
 \(F(x_1, T, x_3) = (T, T, x_3)\)
 \(F(x_1, x_2, T) = (T, x_2, T)\)
 \(F(x_1, \bot, x_3) = (\bot, \bot, x_3)\)
 \(F(x_1, x_2, \bot) = (\bot, x_2, \bot)\)
 \(F(x_1, c_2, c_3) = (c_2 \op c_3, c_2, c_3)\)
- Monotonic? Distributes over \(\cap\)?

Not MOP!

\[
\begin{array}{c}
\text{x}_2 = 1 \\
\downarrow \\
\text{x}_3 = 2 \\
\downarrow \\
\text{x}_1 = \text{x}_2 + \text{x}_3
\end{array}
\]

\((T, 1, 2) \cap (T, 2, 1) = (T, 1, 2)\)

\(F((T, 1, 2) \cap (T, 2, 1)) \neq F(T, 1, 2) \cap F(T, 2, 1)\)

Loops

- Most execution time in most programs is spent in loops: 90/10 is typical
- Most important targets of optimization: loops
 - Loop optimizations:
 - loop-invariant code motion
 - loop unrolling
 - loop peeling
 - strength reduction of expressions containing induction variables
 - removal of bounds checks
- When to apply loop optimizations?

High-level optimization?

- Loops may be hard to recognize in IR or quadruple form -- should we apply loop optimizations to source code or high-level IR?
 - Many kinds of loops: while, do/while, continue
 - loop optimizations benefit from other IR-level optimizations and vice-versa -- want to be able to interleave
- Problem: identifying loops in call-flow graph

Definition of a loop

- A loop is a set of nodes in the control flow graph, with one distinguished node called the header (entry point)
 - Every node is reachable from header, header reachable from every node: strongly-connected component
 - No entering edges from outside except to header
 - nodes with outgoing edges: loop exit nodes
Nested loops

- Control-flow graph may contain many loops, and loops may contain each other
- Control-flow analysis: identify the loops and nesting structure:

Dominators

- CFA based on idea of dominators
- Node A dominates node B if the only way to reach B from start node is through A
- Edge in flowgraph is a back edge if destination dominates source
- A loop contains at least one back edge

Dominator tree

- Domination is transitive; if A dominates B and B dominates C, then A dominates C. A immediately dominates B if domination not implied transitively
- Every flowgraph has dominator tree

Finding dominators

- Goal: for every node in flowgraph, find its set of dominators
- Properties of dominators:
 1. Every node dominates itself
 2. A node B is dominated by another node A if A dominates all of the predecessors of B

Dominator data-flow analysis

- Forward analysis; out[n] is set of nodes dominating n
- “A node B is dominated by another node A if A dominates all of the predecessors of B”
 \[
 \text{in}[n] = \cap_{n' \in \text{pred}(n)} \text{out}[n']
 \]
- Every node dominates itself:
 \[
 \text{out}[n] = \text{in}[n] \cup \{n\}
 \]
- Formally: \(L = \text{sets of nodes ordered by} \subseteq, \text{flow functions} \ P(x) = x \cup \{n\}, \ T = \{\text{all n}\} \)
 \(\Rightarrow \) Standard iterative analysis converges on MOP soln

Completing control-flow analysis

- Dominator analysis gives all back edges
- Each back edge n \(\rightarrow \) h has an associated natural loop with h as its header: all nodes reachable from h that reach n without going through h
- For each back edge, find its natural loop
- Nest loops based on subset relationship between natural loops
- Exception: natural loops may share same header; merge them into larger loop.
- Build control tree using nesting relationship
Loop-invariant hoisting
- Idea: move computations that always give the same result out of the loop: only compute once!
- Hoisting quadruple q: $t = a + b$. Use reaching definitions analysis to see if a, b are invariant (conservatively)
- Must also ensure q is guaranteed to be executed by loop, q is only defn of t, t not live-in at h

Induction variables
- Induction variables are variables with value $ai + b$ on the i^{th} iteration of a natural loop, for constants $a & b$
- Various optimizations can exploit information about induction variables:
 - strength reduction
 - array bounds check elimination
 - loop unrolling

Identifying induction variables
- Basic induction variables: only one definition of the form $i = i + K$
- Derived induction variables: one definition of the form $j = i \times M + N$

Strength reduction
- Every derived induction variable k can be written as $a'i + b$, a and b constants, i some basic induction variable
- For all distinct (a,b) pairs:
 - insert before loop header $k' = b$
 - insert after loop header $k' = k' + a$
 - Replace definition of any k whose formula is $a'i + b$ with $k = k'$
- Result: multiplication(s) replaced by single addition
- Additional optimizations facilitated: copy/constant propagation, dead/useless variable elimination, dead code elimination

Loop unrolling
- Loop unrolling: creates K copies of loop in sequence

Using induction variables
- When loop test expression depends on induction variable (e.g. $i < n$), can use one loop test to ensure that entire unrolled loop will succeed ($i+K-1 < n$): remove all interior loop tests
- Additional loop is needed to “finish up” $0..K-1$ iterations
Summary

- Constant propagation: not all lattice elements are sets; not all analyses give MOP solution.
- Optimizing loop code is critical to good performance
- Loops can be identified automatically in control-flow graph using dominator data-flow analysis; allows interleaving of loop optimizations
- Induction variables enable many loop optimizations: loop unrolling, strength reduction, array bounds checks.