CS 412/413

Introduction to
Compilers and Translators
Andrew Myers
Cornell University

Lecture 27: Dataflow analysis theory
5 April 00

Dataflow analysis

- Abstractly: propagates dataflow values representing information about program through flowgraph. Space of values: \(L \)
- Solution: \(\text{in}[n], \text{out}[n] \in L \) for every node \(n \)
- Live variable analysis: set of live variables
- Available expressions: set of available exprs

Dataflow analysis framework

Dataflow analysis characterized by:

1. Space of values \(L \)
2. Flow function \(F_n \) for every node \(n \)
3. \(\text{out}[n] = F_n(\text{in}[n]) \)
4. \(F_n : L \rightarrow L \)

"If \(l \in L \) is true before executing node \(n \), \(F_n(l) \) is true afterward"

Live vars: \(F_n(l) = \text{use}[n] \cup (l - \text{def}[n]) \)

Iterative analysis

for all \(n \), \(\text{in}[n] = \text{out}[n] = L \)

repeat until no change

for all \(n \)

\[
\begin{align*}
\text{in}[n] &= \bigcap_{n' \in \text{pred}(n)} \text{out}[n'] \\
\text{out}[n] &= F_n(\text{in}[n])
\end{align*}
\]

end
Questions
Will iterative analysis
- produce a solution when it terminates?
- produce the best solution possible?
- terminate?

• Depends on properties of \(L, F, \sqcap \)

L as partial order
• Best solution has as much information as possible – allows most optimization
 - Live variables: smallest possible set
 - Available expressions: largest possible set

• Some dataflow values contain more information: \(l_i \sqsubseteq l_j \) if \(l_i \) has more information than \(l_j \)

• Live variables: \(l_i \sqsubseteq l_j \) \(\iff \) \(l_i \supseteq l_j \)
• Available expressions: \(l_i \sqsubseteq l_j \) \(\iff \) \(l_i \subseteq l_j \)

Partial orders
• \(L \) is a partial order defined by ordering operator \(\sqsubseteq \)
• Some elements are incomparable
• Properties of a partial order
 \(x \sqsubseteq x \) (reflexive)
 \(x \sqsubseteq y \) \& \(y \sqsubseteq z \) \(\Rightarrow \) \(x \sqsubseteq z \) (transitive)
 \(x \sqsubseteq y \) \& \(y \sqsubseteq x \) \(\Rightarrow \) \(x = y \) (anti-symmetry)
• Examples: integers ordered by \(\leq \), types ordered by \(<: \), sets ordered by \(\subseteq \) or \(\supseteq \).

Example: subsets of \{a, b, c\}

Greatest lower bound
• Combining operator \(l_i \sqcap l_j \) gives element \(l \) such that \(l \sqsubseteq l_i, l \sqsubseteq l_j \)
• \(l \) is a lower bound for \(l_i, l_j \)
• Want greatest such element (most info): greatest lower bound (GLB)
• Partial order with GLB/meet \((\sqcap) \) and LUB/join \((\sqcup) \) is a lattice
• With only GLB, a lower semi-lattice

Meet-over-paths solution
• Consider a traversal of flowgraph visiting nodes \(a, b, c, \ldots, n \)
• Assume \(l_0 \) is initial information
• Information known is \(F_0, \ldots, F_n(F_n(F_0(l_0))) \)
• Best possible solution is \(l \) such that \(l \sqsubseteq F_0, \ldots, F_n(F_n(F_0(l_0))) \) for all paths \(a, b, c, \ldots, n \)
• MOP soln: \(\sqcap \text{ all paths } p F_p(F_p(F_p(\ldots))) \)
Data-flow equations

- Algorithm repeatedly recomputes each \(\text{out}[n] \) as
 \[
 F_n(\bigcap_{n' \in \text{pred}(n)} \text{out}[n'])
 \]
- Let \(x_1...x_n \) be \(\text{out}[1]...\text{out}[n] \). Algorithm:
 \[
 x_i = F_i(\bigcap_{j \in \text{pred}(i)} x_j)
 \]
- Solution is point in \(L^n \): \(X = (x_1,...x_n) \)
- Total set of equations is \(X = F(X) \) where
 \[
 F(x_1,...x_n) = (F_1(\bigcap_{j \in \text{pred}(1)} x_j), F_2(...),...)
 \]

Fixed points

- Iterative analysis: initialize all \(x_i \) with top of lattice (\(X_0 = (\top, \top, \top,...) \)), apply \(F(X) \) until fixed point is reached: \(F^k(X_0) = F^{k+1}(X_0) \)
- \(F^k(X_0) \) is a fixed point of \(F \): a value that \(F \) maps to itself
- Wanted: maximal fixed point (we know that minimum-information solution \(\bot \) works)

Monotonicity

- Flow functions map lattice values to other lattice values; must be monotonic
- Monotonicity:
 \[
 l_1 \subseteq l_2 \Rightarrow F(l_1) \subseteq F(l_2)
 \]
 “If you have more information entering a node, you have at least as much leaving”
- Example: reaching definitions. Lattice is all sets of defining nodes ordered by subset relation:
 \[
 F_n(x) = \text{gen}[n] \cup (x - \text{kill}[n])
 \]

Solution quality

- MOP is best possible solution:
 \[
 \bigcap_{\text{all paths } p} P_{\text{pred}(F_p(F_{p'}(...)))}
 \]
- Does iterative analysis
 \[
 x_i = F_i(\bigcap_{j \in \text{pred}(i)} x_j)
 \]
 produce the MOP solution?
- Flow functions must distribute over the meet operator:
 \[
 \bigcap_{i} F(x_i) = F(\bigcap_{i} x_i)
 \]

Reaching definitions

- \(L \) is all sets of defining nodes in call flow graph. Maximum information means smallest possible lists of reaching definitions, so:
 \[
 \text{Top (}\top\text{)} \text{ is the empty set } \{\}, \text{ meet (}\cap\text{)} \text{ is set union (}\cup\text{)}
 \]
 \[
 x_n = \text{out}[n]
 \]
 \[
 F_n(x) = \text{gen}[n] \cup (x - \text{kill}[n])
 \]
 \[
 x_i = F_i(\bigcap_{j \in \text{pred}(i)} x_j) \subseteq \text{in}[n] = \bigcup_{n' \in \text{pred}(i)} \text{out}[n']
 \]
 \[
 \text{out}[n] = \text{gen}[n] \cup (\text{in}[n] - \text{kill}[n])
 \]
Monotonic?

\[F_n(x) = \text{\textit{gen}}[n] \cup (x - \text{\textit{kill}}[n]) \]
\[x_1 \cap x_2 = x_1 \cup x_2 \]

- Is \(F_n(x) \) monotonic?
 - If \(x \subseteq y \)
 - \(F_n(x) = \text{\textit{gen}}[n] \cup (x - \text{\textit{kill}}[n]) \)
 - \(\text{\textit{gen}}[n] \cup (x \cup y - \text{\textit{kill}}[n]) \)
 - \(\text{\textit{gen}}[n] \cup (x - \text{\textit{kill}}[n]) \cup (y - \text{\textit{kill}}[n]) \supseteq F_n(y) \)

MOP?

\[F_n(x) = \text{\textit{gen}}[n] \cup (x - \text{\textit{kill}}[n]) \]
\[x_1 \cap x_2 = x_1 \cup x_2 \]

- Does \(F_n(x) \) distribute over \(\cap \)?
 - \(F_n(x \cap y) = F_n(x \cup y) \)
 - \(= \text{\textit{gen}}[n] \cup (x \cup y - \text{\textit{kill}}[n]) \)
 - \(= (\text{\textit{gen}}[n] \cup (x - \text{\textit{kill}}[n])) \)
 - \(\cup (\text{\textit{gen}}[n] \cup (y - \text{\textit{kill}}[n])) \)
 - \(= F_n(x) \cup F_n(y) \)

\(\therefore \) Iterative analysis always terminates, finds the best possible (meet-over-paths) solution to reaching definitions

Other analyses

- Live variables
 - \(F_n(l) = \text{\textit{use}}[n] \cup (l - \text{\textit{def}}[n]) \)
 - \(\cap = \cup \)

- Available expressions
 - \(F_n(l) = \text{\textit{gen}}[n] \cup (l - \text{\textit{kill}}[n]) \)
 - \(\cap = \cap \)

- Computes MOP solutions?

Summary

- Standard optimizations require data-flow analyses that fit into data-flow analysis framework
- Iterative analysis finds solution if flow function monotonic in \(\cap \), combining function \(\cap \) defines semi-lattice
- Solution is MOP if distribution condition \(\cap, F(x) = F(\cap, x) \) holds