CS412/413
Introduction to Compilers and Translators
Spring ’00

Lecture 3: Syntactic Analysis

Outline
- Review of lexical analysis
- Context-Free Grammars (CFGs)
- Derivations
- Parse trees and abstract syntax
- Ambiguous grammars

Administration
- Homework 1 — due Monday
- Programming assignment 1 — due next Friday
- Everyone should have
 – a project group
 – a CSUGLAB account
 – received mail sent to cs412-students

Where we are

Source code (character stream)

Token stream

Abstract syntax tree (AST)

Lexical analysis

Syntactic Analysis

Semantic Analysis

What is Syntactic Analysis?

Source code (token stream)

{ if (b == 0) a = b;
 while (a != 1) {
 stdio.print(a);
 a = a - 1;
 }
}

Parsing

• Parsing: recognizing whether a program (or sentence) is grammatically well-formed & identifying the function of each component.

“I gave him the book”

Overview of Syntactic Analysis

- Input: stream of tokens
- Output: abstract syntax tree

- Implementation:
 - Parse token stream to traverse concrete syntax (parse tree)
 - During traversal, build abstract syntax tree
 - Abstract syntax tree removes extra syntax
 \[a + b (a) + (b) ((a)+((b))) \]

What Parsing doesn’t do

- Doesn’t check many things: type agreement, variables declared, variables initialized, etc.
 - `int x = true;`
 - `int y;`
 - `z = f(y);`
- Deferred until semantic analysis

Specifying Language Syntax

- First problem: how to describe language syntax precisely and conveniently
- Last time: can describe tokens using regular expressions
- Regular expressions easy to implement, efficient (by converting to DFA)
- Why not use regular expressions (on tokens) to specify programming language syntax?

Limits of REs

- Programming languages are not regular -- cannot be described by regular exprs
- Consider: language of all strings that contain balanced parentheses (easier than PLs)
 \[
 () \quad (()) \quad ()()() \quad (())()((()()))
 \]
 \[
 ((\quad)\quad ()\quad ()(\quad))
 \]
- Problem: need to keep track of number of parentheses seen so far: unbounded counting

Need more power!

- RE = DFA
- DFA has only finite number of states; cannot perform unbounded counting

Context-Free Grammars

- A specification of the balanced-parenthesis language:
 \[
 S \rightarrow (S) S \\
 S \rightarrow \varepsilon
 \]
- The definition is recursive
- This is a context-free grammar
 - More expressive than regular expressions
 - More expressive than regular expressions
 \[
 - S = (S) \varepsilon = ((S) S) \varepsilon = (S) \varepsilon = \varepsilon
 \]
Definition of CFG

- **Terminals**
 - Token or ε
- **Non-terminals**
 - Syntactic variables
- **Start symbol**
 - A special nonterminal is designated (S)
- **Productions**
 - Specify how non-terminals may be expanded to form strings
 - LHS: single non-terminal, RHS: string of terminals or non-terminals
 - Vertical bar is shorthand for multiple prod'ns

Sum grammar

- **S → E + S | E**
- **E → number | (S)**

Derivations

- **S → E + S | E**
- **E → number | (S)**

If a grammar accepts a string, there is a derivation of that string using the productions of the grammar.

Derivation Example

\[S \rightarrow E + S | E \]
\[E \rightarrow \text{number} | (S) \]

Derive \((1+2+(3+4))+5\):

\[S \rightarrow (1+2+(3+4))+5 \]
\[S \rightarrow E + S \rightarrow E + (S) \]
\[S \rightarrow E + (E + S) \]
\[S \rightarrow (1 + 2 + (3+4)) + 5 \]

Constructing a derivation

- Start from start symbol (S)
- Productions are used to derive a sequence of tokens from the start symbol
- For arbitrary strings \(\alpha, \beta, \text{and } \gamma\) and a production \(A \rightarrow \beta\)

 A single step of derivation is

\[\alpha A \gamma \Rightarrow \alpha \beta \gamma \]

- i.e., substitute \(\beta\) for an occurrence of \(A\)

\[\text{counter} = S + E + (E + S) + E \]
\[A = S, \beta = E + S \]

RE is subset of CFG

Regular Expression defn of real numbers:

- **digit → [0-9]**
- **posint → digit+**
- **int → -? posint**
- **real → int . (ε | (0-9)+)**

RE symbolic names are only shorthand: no recursion, so all symbols can be fully expanded:

- **real → int . (ε | (0-9)+)**

Constructing a derivation

- Start from start symbol (S)
- Productions are used to derive a sequence of tokens from the start symbol
- For arbitrary strings \(\alpha, \beta, \text{and } \gamma\) and a production \(A \rightarrow \beta\)

 A single step of derivation is

\[\alpha A \gamma \Rightarrow \alpha \beta \gamma \]

- i.e., substitute \(\beta\) for an occurrence of \(A\)

\[\text{counter} = S + E + (E + S) + E \]
\[A = S, \beta = E + S \]
Derivation \Rightarrow Parse Tree

- Tree representation of the derivation
- Leaves of tree are terminals; in-order traversal yields string
- Internal nodes: non-terminals
- No information about order of derivation steps

Example $S \rightarrow E + S | E$

- Left-most derivation
 $S \rightarrow E + S \rightarrow (S) + S \rightarrow (E + S) + S \rightarrow (1 + E + S) + S$
 $\rightarrow (1 + 2 + (S) + S) \rightarrow (1 + 2 + (E + S) + S)$
 $\rightarrow (1 + 2 + (3 + E) + S) \rightarrow (1 + 2 + (3 + 4) + E) \rightarrow (1 + 2 + (3 + 4)) + 5$

- Right-most derivation
 $S \rightarrow E + S \rightarrow E + S \rightarrow E + E \rightarrow E + E + S \rightarrow (E + E + S) + 5$
 $\rightarrow (E + E + E + S) + 5 \rightarrow (E + E + E + E) + 5 \rightarrow (E + E + E + E) + 5$
 $\rightarrow (E + E + E + E + 5) \rightarrow (E + E + E + E + 5) + 5$
 $\rightarrow (E + E + E + E + 5) + 5 \rightarrow (E + E + E + E + 5) + 5$

Same parse tree: same productions chosen, diff. order

Ambiguous Grammars

- In example grammar, left-most and right-most derivations produced identical parse trees
- + operator associates to right in parse tree regardless of derivation order

An Ambiguous Grammar

- + associates to right because of right-recursive production $S \rightarrow E + S$
- Consider another grammar:

$$S \rightarrow S + S \mid S * S \mid \text{number}$$

- Different derivations produce different parse trees: ambiguous grammar
Differing Parse Trees

\[S \rightarrow S \mid S \ast S \mid \text{number} \]

- Consider expression \(1 + 2 \ast 3\)
- Derivation 1: \(S \rightarrow S \ast S \rightarrow 1 + S \rightarrow 1 + S \ast S \rightarrow 1 + 2 \ast S \rightarrow 1 + 2 \ast 3\)
- Derivation 2: \(S \rightarrow S \ast S \rightarrow S \ast 3 \rightarrow S + S \ast 3 \rightarrow S + 2 \ast 3 \rightarrow 1 + 2 \ast 3\)

\[
\begin{array}{c}
1 \\
\hline
2 \\
\hline
3 \\
\end{array}
\neq
\begin{array}{c}
1 \\
\hline
2 \\
\hline
3 \\
\end{array}
\]

Impact of Ambiguity

- Different parse trees correspond to different evaluations!
- Meaning of program ill-defined

\[
\begin{array}{c}
1 \\
\hline
2 \\
\hline
3 \\
\end{array}
= 7
\]

Eliminating Ambiguity

- Often can eliminate ambiguity by adding non-terminals & allowing recursion only on right or left
 \[S \rightarrow S + T \mid T \]
 \[T \rightarrow T \ast \text{num} \mid \text{num} \]

- \(T\) non-terminal enforces precedence
- Left-recursion: left-associativity

Limits of CFGs

- Syntactic analysis can’t catch all “syntactic” errors
- Example: C++
  ```
  HashTable<Key,Value> x;
  ```
 Need to know whether HashTable is the name of a type to understand syntax! Problem: “<”, “>” are overloaded
- Iota:
  ```
  f(4)[1][2] = 0;
  ```
 Difficult to write grammar for LHS of assign – may be easier to allow all exprs, check later

CFGs

- Context-free grammars allow concise specification of programming languages
- CFG specifies how to convert token stream to parse tree
- Read Appel 3.1, 3.2

Next time: implementing a top-down parser (leftmost derivation)