Lecture 26
Recursive Types
Many languages support data types that refer to themselves:

Java

class Tree {
 Tree leftChild, rightChild;
 int data;
}

OCaml

type tree = Leaf | Node of tree * tree * int

\lambda-calculus?
tree = unit + int \times tree \times tree
Recursive Types

Many languages support data types that refer to themselves:

Java

class Tree {
 Tree leftChild, rightChild;
 int data;
}

OCaml

type tree = Leaf | Node of tree * tree * int
Recursive Types

Many languages support data types that refer to themselves:

Java

class Tree {
 Tree leftChild, rightChild;
 int data;
}

OCaml

type tree = Leaf | Node of tree * tree * int

\(\lambda\)-calculus?

\[\text{tree} = \text{unit} + \text{int} \times \text{tree} \times \text{tree}\]
Recursive Type Equations

We would like tree to be a solution of the equation:

$$\alpha = \text{unit} + \text{int} \times \alpha \times \alpha$$

However, no such solution exists with the types we have so far...
We could *unwind* the equation:

\[\alpha = \text{unit} + \text{int} \times \alpha \times \alpha \]
We could *unwind* the equation:

\[
\alpha = \text{unit} + \text{int} \times \alpha \times \alpha
\]

\[
= \text{unit} + \text{int} \times
\]

\[
(\text{unit} + \text{int} \times \alpha \times \alpha) \times
\]

\[
(\text{unit} + \text{int} \times \alpha \times \alpha)
\]

If we take the limit of this process, we have an infinite tree.
Unwinding Equations

We could *unwind* the equation:

\[
\alpha = \text{unit} + \text{int} \times \alpha \times \alpha
\]

\[
= \text{unit} + \text{int} \times \left(\text{unit} + \text{int} \times \alpha \times \alpha \right) \times \left(\text{unit} + \text{int} \times \alpha \times \alpha \right) \\
= \text{unit} + \text{int} \times \left(\text{unit} + \text{int} \times \left(\text{unit} + \text{int} \times \alpha \times \alpha \right) \times \left(\text{unit} + \text{int} \times \alpha \times \alpha \right) \right) \times \left(\text{unit} + \text{int} \times \alpha \times \alpha \right) \\
= \text{unit} + \text{int} \times \left(\text{unit} + \text{int} \times \left(\text{unit} + \text{int} \times \alpha \times \alpha \right) \times \left(\text{unit} + \text{int} \times \alpha \times \alpha \right) \right) \times \left(\text{unit} + \text{int} \times \alpha \times \alpha \right)
\]

If we take the limit of this process, we have an infinite tree.
Unwinding Equations

We could *unwind* the equation:

\[\alpha = \text{unit} + \text{int} \times \alpha \times \alpha \]

\[= \text{unit} + \text{int} \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \]

\[= \text{unit} + \text{int} \times \\
(\text{unit} + \text{int} \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha)) \times \\
(\text{unit} + \text{int} \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha)) \\
= \ldots \]
We could *unwind* the equation:

\[
\alpha = \text{unit} + \text{int} \times \alpha \times \alpha \\
= \text{unit} + \text{int} \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \\
= \text{unit} + \text{int} \times \\
(\text{unit} + \text{int} \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha)) \times \\
(\text{unit} + \text{int} \times \alpha \times \alpha) \\
(\text{unit} + \text{int} \times \alpha \times \alpha)) \\
= \ldots
\]

If we take the limit of this process, we have an infinite tree.
Infinite Types

Think of this as an infinite labeled graph whose nodes are labeled with the type constructors \times, $+$, \texttt{int}, and \texttt{unit}.

This infinite tree is a solution of our equation, and this is what we take as the type \texttt{tree}.
μ Types

We’ll specify potentially-infinite solutions to type equations using a finite syntax based on the *fixed-point type constructor* \(\mu \).

\[
\mu \alpha. \tau
\]
We’ll specify potentially-infinite solutions to type equations using a finite syntax based on the \textit{fixed-point type constructor} \(\mu \).

\[\mu \alpha. \tau \]

Here’s a \texttt{tree} type satisfying our original equation:

\[\texttt{tree} \triangleq \mu \alpha. \texttt{unit} + \texttt{int} \times \alpha \times \alpha. \]
We’ll define two treatments of recursive types. With equirecursive types, a recursive type is equal to its unfolding:

\[\mu \alpha. \tau \text{ is a solution to } \alpha = \tau, \text{ so:} \]

\[\mu \alpha. \tau = \tau \{ \mu \alpha. \tau / \alpha \} \]
We’ll define two treatments of recursive types. With *equirecursive types*, a recursive type is equal to its unfolding:

\[\mu \alpha. \tau \text{ is a solution to } \alpha = \tau, \text{ so:} \]

\[\mu \alpha. \tau = \tau\{\mu \alpha. \tau / \alpha\} \]

Two typing rules let us switch between folded and unfolded:

\[\frac{\Gamma \vdash e : \tau\{\mu \alpha. \tau / \alpha\}}{\Gamma \vdash e : \mu \alpha. \tau} \quad \mu\text{-INTRO} \]

\[\frac{\Gamma \vdash e : \mu \alpha. \tau}{\Gamma \vdash e : \tau\{\mu \alpha. \tau / \alpha\}} \quad \mu\text{-ELIM} \]
Isorecursive Types

Alternatively, *isorecursive types* avoid infinite type trees.

The type $\mu \alpha. \tau$ is distinct but transformable to and from $\tau\{\mu \alpha. \tau/\alpha\}$.
Isorecursive Types

Alternatively, *isorecursive types* avoid infinite type trees.

The type $\mu \alpha. \tau$ is distinct but transformable to and from $\tau\{\mu \alpha. \tau/\alpha\}$.

Converting between the two uses explicit **fold** and **unfold** operations:

\[
\text{unfold}_{\mu \alpha. \tau} : \mu \alpha. \tau \rightarrow \tau\{\mu \alpha. \tau/\alpha\}
\]
\[
\text{fold}_{\mu \alpha. \tau} : \tau\{\mu \alpha. \tau/\alpha\} \rightarrow \mu \alpha. \tau
\]
Static Semantics (Isorecursive)

The typing rules introduce and eliminate μ-types:

$$\frac{\Gamma \vdash e : \tau\{\mu \alpha. \tau/\alpha\}}{\Gamma \vdash \text{fold } e : \mu \alpha. \tau} \quad \mu\text{-INTRO}$$

$$\frac{\Gamma \vdash e : \mu \alpha. \tau}{\Gamma \vdash \text{unfold } e : \tau\{\mu \alpha. \tau/\alpha\}} \quad \mu\text{-ELIM}$$
Dynamic Semantics

We also need to augment the operational semantics:

\[\text{unfold} \left(\text{fold} \; e \right) \rightarrow e \]

Intuitively, to access data in a recursive type \(\mu \alpha. \tau \), we need to \textbf{unfold} it first. And the only way that values of type \(\mu \alpha. \tau \) could have been created is via \textbf{fold}.
Example

Here’s a recursive type for lists of numbers:

\[
\text{intlist} \triangleq \mu \alpha. \, \text{unit} + \text{int} \times \alpha.
\]
Example

Here’s a recursive type for lists of numbers:

\[
\text{intlist} \triangleq \mu\alpha. \text{unit} + \text{int} \times \alpha.
\]

Here’s how to add up the elements of an intlist:

let sum =
 fix (\lambda f: \text{intlist} \rightarrow \text{intlist}
 \lambda l: \text{intlist}. \text{case unfold } l \text{ of}
 (\lambda u: \text{unit}. 0)
 | (\lambda p: \text{int} \times \text{intlist}. (#1 p) + f(#2 p)))
Recursive types let us encode the natural numbers!
Encoding Numbers

Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural number:

\[
\text{nat} \triangleq \mu \alpha. \ \text{unit} + \alpha
\]
Encoding Numbers

Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural number:

\[
\text{nat} \triangleq \mu \alpha. \ \text{unit} + \alpha
\]

\[
0 \triangleq \text{fold} (\text{inl}_{\text{unit} + \text{nat}} (()))
\]
Encoding Numbers

Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural number:

\[
\text{nat} \triangleq \mu \alpha. \text{unit} + \alpha \\
0 \triangleq \text{fold} (\text{inl}_{\text{unit} + \text{nat}} (())) \\
1 \triangleq \text{fold} (\text{inr}_{\text{unit} + \text{nat}} 0) \\
2 \triangleq \text{fold} (\text{inr}_{\text{unit} + \text{nat}} 1), \\
\vdots
\]
Encoding Numbers

Recursive types let us encode the natural numbers!

A natural number is either 0 or the successor of a natural number:

\[\text{nat} \triangleq \mu \alpha. \text{unit} + \alpha \]

\[0 \triangleq \text{fold} (\text{inl}_{\text{unit} + \text{nat}}()) \]

\[1 \triangleq \text{fold} (\text{inr}_{\text{unit} + \text{nat}} 0) \]

\[2 \triangleq \text{fold} (\text{inr}_{\text{unit} + \text{nat}} 1), \]

\[\vdots \]

The successor function has type \(\text{nat} \rightarrow \text{nat} \):

\[(\lambda x : \text{nat}. \text{fold} (\text{inr}_{\text{unit} + \text{nat}} x)) \]
Self-Application and Ω

Recall Ω defined as:

$$
\omega \triangleq \lambda x. x \ x \qquad \Omega \triangleq \omega \ \omega.
$$

Ω was impossible to type... until now!
Self-Application and Ω

Recall Ω defined as:

$$\omega \triangleq \lambda x. \, x \, x \quad \Omega \triangleq \omega \, \omega.$$

Ω was impossible to type... until now!

x is a function. Let’s say it has the type $\sigma \rightarrow \tau$.
Self-Application and Ω

Recall Ω defined as:

$$\omega \triangleq \lambda x. x \ x \quad \Omega \triangleq \omega \ \omega.$$

Ω was impossible to type... until now!

x is a function. Let’s say it has the type $\sigma \rightarrow \tau$.

x is used as the argument to this function, so it must have type σ.
Self-Application and Ω

Recall Ω defined as:

\[\omega \triangleq \lambda x. x \ x \quad \Omega \triangleq \omega \ \omega. \]

Ω was impossible to type... until now!

x is a function. Let’s say it has the type \(\sigma \rightarrow \tau. \)

x is used as the argument to this function, so it must have type \(\sigma. \)

So let’s write a type equation:

\[\sigma = \sigma \rightarrow \tau \]
Putting these pieces together, the fully typed ω term is:

$$\omega \triangleq \lambda x : \mu \alpha. (\alpha \rightarrow \tau). (\text{unfold } x) \, x$$
Self-Application and Ω

Putting these pieces together, the fully typed ω term is:

$$\omega \triangleq \lambda x : \mu \alpha. (\alpha \rightarrow \tau). (\text{unfold } x) \ x$$

The type of ω is $(\mu \alpha. (\alpha \rightarrow \tau)) \rightarrow \tau$.

So the type of $\text{fold } \omega$ is $\mu \alpha. (\alpha \rightarrow \tau)$.
Self-Application and Ω

Putting these pieces together, the fully typed ω term is:

$$\omega \triangleq \lambda x : \mu \alpha. (\alpha \rightarrow \tau). (\text{unfold } x) x$$

The type of ω is $(\mu \alpha. (\alpha \rightarrow \tau)) \rightarrow \tau$.

So the type of $\text{fold } \omega$ is $\mu \alpha. (\alpha \rightarrow \tau)$.

Now we can define $\Omega = \omega \ (\text{fold } \omega)$. It has type τ.
Self-Application and Ω

We can even write ω in OCaml:

```ocaml
# type u = Fold of (u -> u);;
val type u = Fold of (u -> u) : constr

# let omega = fun x -> match x with Fold f -> f x;;
val omega : u -> u = <fun>

# omega (Fold omega);;
...runs forever until you hit control-c
```
With recursive types, we can type everything in the untyped lambda calculus!

\[\text{Encoding } \lambda\text{-Calculus} \]

\[\text{With recursive types, we can type everything in the untyped lambda calculus!} \]
With recursive types, we can type everything in the untyped lambda calculus!

Every \(\lambda \)-term can be applied as a function to any other \(\lambda \)-term. So let’s define an “untyped” type:

\[
U \triangleq \mu \alpha. \alpha \rightarrow \alpha
\]
Encoding \(\lambda \)-Calculus

With recursive types, we can type everything in the untyped lambda calculus!

Every \(\lambda \)-term can be applied as a function to any other \(\lambda \)-term. So let’s define an “untyped” type:

\[
U \triangleq \mu \alpha. \alpha \rightarrow \alpha
\]

The full translation is:

\[
\begin{align*}
[x] & \triangleq x \\
[e_0 \; e_1] & \triangleq (\text{unfold } [e_0]) \; [e_1] \\
[\lambda x. \; e] & \triangleq \text{fold } \lambda x : U. \; [e]
\end{align*}
\]

Every untyped term maps to a term of type \(U \).