Lecture 23
Advanced Types
We’ve developed a type system for the λ-calculus and mathematical tools for proving its type soundness.

We also know how to extend the λ-calculus with new language features.

Today, we’ll extend our type system with features commonly found in real-world languages: products, sums, and references.
Products (Pairs)

Syntax

\[e ::= \cdots | (e_1, e_2) | \#1 e | \#2 e \]
\[v ::= \cdots | (v_1, v_2) \]
Products (Pairs)

Syntax

\[
e ::= \cdots \mid (e_1, e_2) \mid \#1 e \mid \#2 e \\
v ::= \cdots \mid (v_1, v_2)
\]

Semantics

\[
E ::= \cdots \mid (E, e) \mid (v, E) \mid \#1 E \mid \#2 E
\]

\[
\text{#1}(v_1, v_2) \rightarrow v_1 \quad \text{#2}(v_1, v_2) \rightarrow v_2
\]
Product Types

\[\tau_1 \times \tau_2 \]
Product Types

\[\tau_1 \times \tau_2 \]

\[\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2 \]

\[\Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2 \]
Product Types

\[\tau_1 \times \tau_2 \]

\[
\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2 \\
\Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2
\]

\[
\Gamma \vdash e : \tau_1 \times \tau_2 \\
\Gamma \vdash \#1 e : \tau_1
\]

\[
\Gamma \vdash e : \tau_1 \times \tau_2 \\
\Gamma \vdash \#2 e : \tau_2
\]
Sums (Tagged Unions)

Syntax

\[
e ::= \cdots \mid \text{inl}_{\tau_1 + \tau_2} e \mid \text{inr}_{\tau_1 + \tau_2} e \mid (\text{case } e_1 \text{ of } e_2 \mid e_3)
\]

\[
v ::= \cdots \mid \text{inl}_{\tau_1 + \tau_2} v \mid \text{inr}_{\tau_1 + \tau_2} v
\]
Sums (Tagged Unions)

Syntax

$$e ::= \cdots \mid \text{inl}_{\tau_1+\tau_2} e \mid \text{inr}_{\tau_1+\tau_2} e \mid (\text{case } e_1 \text{ of } e_2 \mid e_3)$$

$$v ::= \cdots \mid \text{inl}_{\tau_1+\tau_2} v \mid \text{inr}_{\tau_1+\tau_2} v$$

Semantics

$$E ::= \cdots \mid \text{inl}_{\tau_1+\tau_2} E \mid \text{inr}_{\tau_1+\tau_2} E \mid (\text{case } E \text{ of } e_2 \mid e_3)$$

\[
\text{case inl}_{\tau_1+\tau_2} v \text{ of } e_2 \mid e_3 \rightarrow e_2 v
\]

\[
\text{case inr}_{\tau_1+\tau_2} v \text{ of } e_2 \mid e_3 \rightarrow e_3 v
\]
\[\tau ::= \cdots \mid \tau_1 + \tau_2 \]
Sum Types

\[\tau ::= \ldots \mid \tau_1 + \tau_2 \]

\[
\Gamma \vdash e : \tau_1 \\
\Gamma \vdash \text{inl}_{\tau_1 + \tau_2} e : \tau_1 + \tau_2
\]

\[
\Gamma \vdash e : \tau_2 \\
\Gamma \vdash \text{inr}_{\tau_1 + \tau_2} e : \tau_1 + \tau_2
\]
Sum Types

\[\tau ::= \cdots \mid \tau_1 + \tau_2 \]

\[\Gamma \vdash e : \tau_1 \]
\[\Gamma \vdash \text{inl}_{\tau_1 + \tau_2} e : \tau_1 + \tau_2 \]

\[\Gamma \vdash e : \tau_2 \]
\[\Gamma \vdash \text{inr}_{\tau_1 + \tau_2} e : \tau_1 + \tau_2 \]

\[\Gamma \vdash e : \tau_1 + \tau_2 \quad \Gamma \vdash e_1 : \tau_1 \rightarrow \tau \quad \Gamma \vdash e_2 : \tau_2 \rightarrow \tau \]
\[\Gamma \vdash \text{case } e \text{ of } e_1 | e_2 : \tau \]
Example

let $f = \lambda a: \text{int} + (\text{int} \rightarrow \text{int})$.

 case a of $(\lambda y: \text{int}. y + 1) \mid (\lambda g: \text{int} \rightarrow \text{int}. g 35)$ in

let $h = \lambda x: \text{int}. x + 7$ in

$f (\text{inr}_{\text{int} + (\text{int} \rightarrow \text{int})} h)$
Syntax

\[e ::= \cdots \mid \text{ref } e \mid !e \mid e_1 := e_2 \mid \ell \]

\[v ::= \cdots \mid \ell \]
References

Syntax

\[e ::= \cdots | \text{ref } e | !e | e_1 ::= e_2 | \ell \]
\[v ::= \cdots | \ell \]

Semantics

\[E ::= \cdots | \text{ref } E | !E | E ::= e | v ::= E \]

\[\ell \not\in \text{dom}(\sigma) \quad \frac{\langle \sigma, \text{ref } v \rangle \rightarrow \langle \sigma[\ell \mapsto v], \ell \rangle}{\sigma(\ell) = v} \quad \frac{\langle \sigma, !\ell \rangle \rightarrow \langle \sigma, v \rangle}{\langle \sigma, \ell := v \rangle \rightarrow \langle \sigma[\ell \mapsto v], v \rangle} \]
Reference Types

\[
\tau ::= \cdots \mid \tau\ \text{ref}
\]
Reference Types

\[\tau ::= \cdots | \tau \text{ref} \]

\[\Gamma \vdash e : \tau \]

\[\frac{\Gamma \vdash e : \tau}{\Gamma \vdash \text{ref} \, e : \tau \text{ref}} \]
Reference Types

\[\tau ::= \cdots \mid \tau \text{ref} \]

\[\Gamma \vdash e : \tau \quad \Gamma \vdash \text{ref } e : \tau \text{ref} \]

\[\Gamma \vdash e : \tau \text{ref} \quad \Gamma \vdash !e : \tau \]
Reference Types

\[\tau ::= \cdots | \tau \text{ ref} \]

\[\Gamma \vdash e : \tau \quad \Gamma \vdash \text{ref } e : \tau \text{ ref} \]

\[\Gamma \vdash e : \tau \text{ ref} \quad \Gamma \vdash !e : \tau \]

\[\Gamma \vdash e_1 : \tau \text{ ref} \quad \Gamma \vdash e_2 : \tau \quad \Gamma \vdash e_1 := e_2 : \tau \]
Question

Is this type system sound?
Question

Is this type system sound?

Well... what is the type of a location ℓ?
Is this type system sound?

Well... what is the type of a location ℓ? (Oops!)
Store Typings

Let Σ range over partial functions from locations to types.
Store Typings

Let Σ range over partial functions from locations to types.

$$
\frac{
\Gamma, \Sigma \vdash e : \tau
}{
\Gamma, \Sigma \vdash \text{ref} \, e : \tau \, \text{ref}
}$$
Store Typings

Let Σ range over partial functions from locations to types.

\[
\begin{align*}
\Gamma, \Sigma \vdash e : \tau \\
\Gamma, \Sigma \vdash \text{ref } e : \tau \text{ ref} \\
\Gamma, \Sigma \vdash e : \tau \text{ ref} \\
\Gamma, \Sigma \vdash !e : \tau
\end{align*}
\]
Store Typings

Let Σ range over partial functions from locations to types.

\[
\Gamma, \Sigma \vdash e : \tau \\
\Gamma, \Sigma \vdash \text{ref } e : \tau \text{ ref}
\]

\[
\Gamma, \Sigma \vdash e : \tau \text{ ref} \\
\Gamma, \Sigma \vdash !e : \tau
\]

\[
\Gamma, \Sigma \vdash e_1 : \tau \text{ ref} \quad \Gamma, \Sigma \vdash e_2 : \tau \\
\Gamma, \Sigma \vdash e_1 := e_2 : \tau
\]
Store Typings

Let Σ range over partial functions from locations to types.

\[
\Gamma, \Sigma \vdash e : \tau \\
\Gamma, \Sigma \vdash \text{ref } e : \tau \text{ ref}
\]

\[
\Gamma, \Sigma \vdash e : \tau \text{ ref} \\
\Gamma, \Sigma \vdash \text{!} e : \tau
\]

\[
\Gamma, \Sigma \vdash e_1 : \tau \text{ ref} \quad \Gamma, \Sigma \vdash e_2 : \tau \\
\Gamma, \Sigma \vdash e_1 := e_2 : \tau
\]

\[
\Sigma(\ell) = \tau \\
\Gamma, \Sigma \vdash \ell : \tau \text{ ref}
\]
Definition

Store σ is well-typed with respect to typing context Γ and store typing Σ, written $\Gamma, \Sigma \vdash \sigma$, if $\text{dom}(\sigma) = \text{dom}(\Sigma)$ and for all $\ell \in \text{dom}(\sigma)$ we have $\Gamma, \Sigma \vdash \sigma(\ell) : \Sigma(\ell)$.
Reference Types Metatheory

Definition

Store σ is *well-typed* with respect to typing context Γ and store typing Σ, written $\Gamma, \Sigma \vdash \sigma$, if $\text{dom}(\sigma) = \text{dom}(\Sigma)$ and for all $\ell \in \text{dom}(\sigma)$ we have $\Gamma, \Sigma \vdash \sigma(\ell) : \Sigma(\ell)$.

Theorem (Type soundness)

If $\cdot, \Sigma \vdash e : \tau$ and $\cdot, \Sigma \vdash \sigma$ and $\langle e, \sigma \rangle \rightarrow^* \langle e', \sigma' \rangle$ and $\langle e', \sigma' \rangle \not\rightarrow$, then e' is a value.
Reference Types Metatheory

Definition

Store σ is *well-typed* with respect to typing context Γ and store typing Σ, written $\Gamma, \Sigma \vdash \sigma$, if $\text{dom}(\sigma) = \text{dom}(\Sigma)$ and for all $\ell \in \text{dom}(\sigma)$ we have $\Gamma, \Sigma \vdash \sigma(\ell) : \Sigma(\ell)$.

Theorem (Type soundness)

If $\cdot, \Sigma \vdash e : \tau$ and $\cdot, \Sigma \vdash \sigma$ and $\langle e, \sigma \rangle \rightarrow^* \langle e', \sigma' \rangle$ and $\langle e', \sigma' \rangle \not\rightarrow$, then e' is a value.

Lemma (Preservation)

If $\Gamma, \Sigma \vdash e : \tau$ and $\Gamma, \Sigma \vdash \sigma$ and $\langle e, \sigma \rangle \rightarrow \langle e', \sigma' \rangle$ then there exists some $\Sigma' \supseteq \Sigma$ such that $\Gamma, \Sigma' \vdash e' : \tau$ and $\Gamma, \Sigma' \vdash \sigma'$.
Landin’s Knot

Using references, we (re)gain the ability define recursive functions!

\[
\begin{align*}
\text{let } & r = \text{ref } \lambda x : \text{int. } 0 \text{ in} \\
& \text{let } a = (r : = f) \text{ in} \\
& f 5
\end{align*}
\]
Landin’s Knot

Using references, we (re)gain the ability define recursive functions!

```ocaml
let r = ref λx:int. 0 in
let f = (λx:int. if x = 0 then 1 else x × (!r) (x - 1)) in
```
Landin’s Knot

Using references, we (re)gain the ability define recursive functions!

```ml
let r = ref (\x:int. 0) in
let f = (\x:int. if x = 0 then 1 else x \times (!r) (x - 1)) in
let a = (r := f) in
```
Landin’s Knot

Using references, we (re)gain the ability define recursive functions!

```ocaml
let r = ref \x:int. 0 in
let f = (\x:int. if x = 0 then 1 else x \times (!r) (x - 1)) in
let a = (r := f) in
f 5
```
Fixed Points

Syntax

\[e ::= \ldots | \text{fix } e \]
Fixed Points

Syntax

\[e ::= \cdots | \text{fix } e \]

Semantics

\[E ::= \cdots | \text{fix } E \]

\[
\text{fix } \lambda x : \tau. \ e \rightarrow e\{(\text{fix } \lambda x : \tau. \ e)/x\}
\]
Fixed Points

Syntax

\[e ::= \cdots | \text{fix } e \]

Semantics

\[E ::= \cdots | \text{fix } E \]

\[
\text{fix } \lambda x : \tau. \ e \rightarrow e\{\text{fix } \lambda x : \tau. \ e)/x\}
\]

The typing rule for fix is on the homework...