Lecture 16
Fixed-Point Combinators
Termination in the λ-calculus

We have encoded lots of useful programming functionality that produces values.

Does every closed λ-term eventually terminate under CBN evaluation?

$$\forall \text{ closed term } e. \exists e'. e \rightarrow^* e' \land e' \not\rightarrow ?$$
We have encoded lots of useful programming functionality that produces values.

Does every closed \(\lambda \)-term eventually terminate under CBN evaluation?

\[
\forall \text{ closed term } e. \exists e'. e \rightarrow^* e' \land e' \not\rightarrow^* ?
\]

No!

\[
\Omega \triangleq (\lambda x. x x) (\lambda x. x x)
\]
Termination in the λ-calculus

We have encoded lots of useful programming functionality that produces values.

Does every closed λ-term eventually terminate under CBN evaluation?

$$\forall \text{closed term } e. \exists e'. e \rightarrow^* e' \land e' \not\rightarrow?$$

No!

$$\Omega \triangleq (\lambda x. x x) (\lambda x. x x)$$
$$\rightarrow (x x) \{ (\lambda x. x x)/x \}$$
$$= (\lambda x. x x) (\lambda x. x x)$$
$$= \Omega$$
Recursive Functions

How would we write recursive functions, like factorial?
Recursive Functions

How would we write recursive functions, like factorial?

We’d like to write it like this...

\[
\text{FACT} \triangleq \lambda n. \text{IF} (\text{ISZERO } n) 1 (\text{TIMES } n (\text{FACT} (\text{PRED } n)))
\]
Recursive Functions

How would we write recursive functions, like factorial?

We’d like to write it like this...

\[
\text{FACT} \triangleq \lambda n. \text{IF} (\text{ISZERO } n) 1 (\text{TIMES } n (\text{FACT} (\text{PRED } n)))
\]

In slightly more readable notation this is...

\[
\text{FACT} \triangleq \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times \text{FACT} (n - 1)
\]

...but this is an equation, not a definition!
We can perform a “trick” to define a function FACT that satisfies the recursive equation on the previous slide.
Recursion removal trick

We can perform a “trick” to define a function FACT that satisfies the recursive equation on the previous slide.

Define a new function FACT' that takes a function f as an argument. Then, for “recursive” calls, it uses $f f$:

$$\text{FACT}' \triangleq \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times ((f f) (n - 1))$$
We can perform a “trick” to define a function FACT that satisfies the recursive equation on the previous slide.

Define a new function FACT’ that takes a function f as an argument. Then, for “recursive” calls, it uses f f:

\[
\text{FACT'} \triangleq \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times ((ff)(n - 1))
\]

Then define FACT as FACT’ applied to itself:

\[
\text{FACT} \triangleq \text{FACT'} \text{ FACT'}
\]
Example

Let’s try evaluating FACT on 3...

FACT 3
Example

Let’s try evaluating FACT on 3...

\[\text{FACT} \ 3 = (\text{FACT'} \ \text{FACT'}) \ 3 \]
Example

Let’s try evaluating FACT on 3...

\[\text{FACT} \ 3 \ = \ (\text{FACT}’ \ \text{FACT}’) \ 3 \]

\[= \ ((\lambda f. \ \lambda n. \ \text{if} \ n = 0 \ \text{then} \ 1 \ \text{else} \ n \times ((ff) (n - 1))) \ \text{FACT}’) \ 3 \]
Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT’ FACT’) 3

= ((λf. λn. if n = 0 then 1 else n × ((ff) (n − 1))) FACT’) 3

→ (λn. if n = 0 then 1 else n × ((FACT’ FACT’) (n − 1))) 3

→ 3 × (FACT (3 − 1))

→ ∗ 6
Example

Let’s try evaluating FACT on 3...

\[
\text{FACT } 3 = (\text{FACT'} \ \text{FACT'}) \ 3 \\
= ((\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times ((ff)(n - 1))) \ \text{FACT'}) \ 3 \\
\rightarrow (\lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times ((\text{FACT'} \ \text{FACT'}) (n - 1))) \ 3 \\
\rightarrow \text{if } 3 = 0 \text{ then } 1 \text{ else } 3 \times ((\text{FACT'} \ \text{FACT'}) (3 - 1))
\]
Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT’ FACT’) 3

= (((λf. λn. if n = 0 then 1 else n × ((f f) (n − 1))) FACT’) 3
→ (λn. if n = 0 then 1 else n × ((FACT’ FACT’) (n − 1))) 3
→ if 3 = 0 then 1 else 3 × ((FACT’ FACT’) (3 − 1))
→ 3 × ((FACT’ FACT’) (3 − 1))
Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT’ FACT’) 3

= ((λf. λn. if n = 0 then 1 else n × ((f f) (n − 1))) FACT’) 3
→ (λn. if n = 0 then 1 else n × ((FACT’ FACT’) (n − 1))) 3
→ if 3 = 0 then 1 else 3 × ((FACT’ FACT’) (3 − 1))
→ 3 × ((FACT’ FACT’) (3 − 1))
= 3 × (FACT (3 − 1))
Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT’ FACT’) 3

= (((λf. λn. if n = 0 then 1 else n × ((ff) (n − 1))) FACT’) 3
→ (λn. if n = 0 then 1 else n × ((FACT’ FACT’) (n − 1))) 3
→ if 3 = 0 then 1 else 3 × ((FACT’ FACT’) (3 − 1))
→ 3 × ((FACT’ FACT’) (3 − 1))
= 3 × (FACT (3 − 1))
→ ...
→ 3 × 2 × 1 × 1
Example

Let’s try evaluating FACT on 3...

FACT 3 = (FACT’ FACT’) 3

= ((λf. λn. if \(n = 0 \) then 1 else \(n \times ((ff)(n-1)) \)) \(n = 0 \) then 1 else \(n \times ((FACT’ FACT’)(n-1)) \)) 3

→ (λn. if \(n = 0 \) then 1 else \(n \times ((FACT’ FACT’)(n-1)) \)) 3

→ if \(3 = 0 \) then 1 else \(3 \times ((FACT’ FACT’)(3-1)) \)

→ \(3 \times ((FACT’ FACT’)(3-1)) \)

= \(3 \times (FACT (3-1)) \)

→ \(\ldots \)

→ \(3 \times 2 \times 1 \times 1 \)

→ * 6
Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different function \(f' \) that takes itself as an argument and uses self-application for recursive calls, and then define \(f \) as \(f' \ f' \).
Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different function f' that takes itself as an argument and uses self-application for recursive calls, and then define f as $f' f'$. There is another way: fixed points!
Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different function f' that takes itself as an argument and uses self-application for recursive calls, and then define f as $f' f'$.

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

\[G \triangleq \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f(n - 1)) \]
Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different function f' that takes itself as an argument and uses self-application for recursive calls, and then define f as $f' f'$.

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$ G \triangleq \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f(n - 1)) $$

Recall that if g is a fixed point of G, then $G g = g$. To see that any fixed point g is a real factorial function, try evaluating it:

$$ g \ 5 = (G \ g) \ 5 $$
Our “trick” requires following human-readable instructions. Write a different function f' that takes itself as an argument and uses self-application for recursive calls, and then define f as $f' f'$. There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f. \lambda n. \textbf{if } n = 0 \textbf{ then } 1 \textbf{ else } n \times (f (n - 1))$$

Recall that if g is a fixed point of G, then $G g = g$. To see that any fixed point g is a real factorial function, try evaluating it:

$$g\ 5 = (G\ g)\ 5$$
$$\rightarrow^* 5 \times (g\ 4)$$
Fixed point combinators

Our “trick” requires following human-readable instructions. Write a different function f' that takes itself as an argument and uses self-application for recursive calls, and then define f as $f' f'$.

There is another way: fixed points!

Consider factorial again. It is a fixed point of the following:

$$G \triangleq \lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f(n - 1))$$

Recall that if g is a fixed point of G, then $G g = g$. To see that any fixed point g is a real factorial function, try evaluating it:

$$g 5 = (G g) 5$$

$$\rightarrow^* 5 \times (g 4)$$

$$= 5 \times ((G g) 4)$$
Fixed point combinators

How can we generate the fixed point of G?

In denotational semantics, finding fixed points took a lot of math. In the λ-calculus, we just need a suitable combinator...
The (infamous) Y combinator is defined as

\[Y \triangleq \lambda f. (\lambda x. f(xx)) (\lambda x. f(xx)) \]

We say that Y is a **fixed point combinator** because Y \(f \) is a fixed point of \(f \) (for any \(\lambda \)-term \(f \)).
Y Combinator

The (infamous) Y combinator is defined as

\[Y \triangleq \lambda f. (\lambda x. f(xx)) (\lambda x. f(xx)) \]

We say that Y is a fixed point combinator because Yf is a fixed point of f (for any \(\lambda \)-term f).

What happens when we evaluate YG under CBV?
Z Combinator

To avoid this issue, we’ll use a slight variant of the Y combinator, called Z, which is easier to use under CBV.
Z Combinator

To avoid this issue, we’ll use a slight variant of the Y combinator, called Z, which is easier to use under CBV.

\[
Z \triangleq \lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))
\]
Example

Let’s see Z in action, on our function G.

FACT
Example

Let’s see Z in action, on our function G.

\[
\text{FACT} = Z
\]

\[
= Z \ G
\]
Example

Let’s see Z in action, on our function G.

\[
\text{FACT} = Z \ G = \\
(\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) \ G
\]
Example

Let’s see \(Z \) in action, on our function \(G \).

\[
\text{FACT} = Z \ G \\
= (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) \ G \\
\rightarrow (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y))
\]
Example

Let’s see Z in action, on our function G.

\[
\text{FACT} = Z \cdot G \\
= (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) \cdot G \\
\rightarrow (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) \\
\rightarrow G (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y)
\]
Example

Let’s see Z in action, on our function G.

\[
\begin{align*}
\text{FACT} & = Z \\ & = (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) G \\ & \rightarrow (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) \\ & \rightarrow G (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) \\ & = (\lambda f. \lambda n. \textbf{if } n = 0 \textbf{ then } 1 \textbf{ else } n \times (f (n - 1))) \\ & \quad (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y)
\end{align*}
\]
Example

Let’s see Z in action, on our function G.

\[
\begin{align*}
\text{FACT} &= Z G \\
&= (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) G \\
&\rightarrow (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) \\
&\rightarrow G (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) \\
&= (\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f (n - 1))) \\
&\quad (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) \\
&\rightarrow \lambda n. \text{if } n = 0 \text{ then } 1 \\
&\quad \text{else } n \times ((\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) (n - 1))
\end{align*}
\]
Example

Let’s see Z in action, on our function G.

\[
\text{FACT} = Z \ G
\]
\[
= (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) \ G
\]
\[
\rightarrow (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y))
\]
\[
\rightarrow G (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y))) y
\]
\[
= (\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f (n - 1)))
\]
\[
\quad (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y))) y
\]
\[
\rightarrow \lambda n. \text{if } n = 0 \text{ then } 1
\]
\[
\quad \text{else } n \times ((\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y))) y) (n - 1)
\]
\[
=_{\beta} \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (\lambda y. (Z \ G) y) (n - 1)
\]
Example

Let’s see Z in action, on our function G.

\[
\begin{align*}
\text{FACT} & = Z \ G \\
& = (\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))) \ G \\
& \rightarrow (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) \\
& \rightarrow G (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) \\
& = (\lambda f. \lambda n. \begin{cases} 1 & \text{if } n = 0 \\ n \times (f(n - 1)) & \text{else} \end{cases}) (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) \\
& \rightarrow \lambda n. \begin{cases} 1 & \text{if } n = 0 \\ n \times (\lambda y. (\lambda x. G (\lambda y. x x y)) (\lambda x. G (\lambda y. x x y)) y) (n - 1) & \text{else} \end{cases} \\
& = \beta \lambda n. \begin{cases} 1 & \text{if } n = 0 \\ n \times (\lambda y. (Z \ G) y) (n - 1) & \text{else} \end{cases} \\
& = \beta \lambda n. \begin{cases} 1 & \text{if } n = 0 \\ n \times ((Z \ G) (n - 1)) & \text{else} \end{cases}
\end{align*}
\]
Example

Let’s see Z in action, on our function G.

\[
\text{FACT} = ZG \\
= (\lambda f. (\lambda x. f(\lambda y. xx)) (\lambda x. f(\lambda y. xy))) G \\
\rightarrow (\lambda x. G(\lambda y. xy)) (\lambda x. G(\lambda y. xy)) \\
\rightarrow G(\lambda y. (\lambda x. G(\lambda y. xy))(\lambda x. G(\lambda y. xy))y) \\
= (\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f(n-1))) \\
\quad (\lambda y. (\lambda x. G(\lambda y. xy)) (\lambda x. G(\lambda y. xy))y) \\
\rightarrow \lambda n. \text{if } n = 0 \text{ then } 1 \\
\quad \text{else } n \times ((\lambda y. (\lambda x. G(\lambda y. xy)) (\lambda x. G(\lambda y. xy))y) (n-1)) \\
= \beta \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (\lambda y. (ZG)y)(n-1) \\
= \beta \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times ((ZG)(n-1)) \\
= \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (\text{FACT}(n-1))
\]
Other fixed point combinators

There are many (indeed infinitely many) fixed-point combinators. Here’s a cute one:

\[Y_k \triangleq (L L) \]

where

\[L \triangleq \lambda abcdefghijklmnopqrstuvwxyzr. \]

\[(r (t h i s i s a f i x e d p o i n t c o m b i n a t o r)) \]
To gain some more intuition for fixed point combinators, let’s derive a combinator Θ originally discovered by Turing.
Turing’s Fixed Point Combinator

To gain some more intuition for fixed point combinators, let’s derive a combinator Θ originally discovered by Turing.

We know that Θf is a fixed point of f, so we have

$$\Theta f = f (\Theta f).$$
To gain some more intuition for fixed point combinators, let’s derive a combinator Θ originally discovered by Turing.

We know that Θf is a fixed point of f, so we have

$$\Theta f = f (\Theta f).$$

We can write the following recursive equation:

$$\Theta = \lambda f. f (\Theta f)$$
Turing’s Fixed Point Combinator

To gain some more intuition for fixed point combinators, let’s derive a combinator Θ originally discovered by Turing.

We know that Θf is a fixed point of f, so we have

$$\Theta f = f (\Theta f).$$

We can write the following recursive equation:

$$\Theta = \lambda f. f (\Theta f)$$

Now use the recursion removal trick:

$$\Theta' \triangleq \lambda t. \lambda f. f (t t f)$$

$$\Theta \triangleq \Theta' \Theta'$$
Example

\[\text{FACT} = \Theta G \]
\[\text{FACT} = \Theta \ G \\
= \big((\lambda t. \lambda f. f(\text{ttf})) (\lambda t. \lambda f. f(t t f)) \big) \ G \]
\[\theta \text{ Example} \]

\[
\text{FACT} = \Theta G \\
= (((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f))) G \\
\rightarrow (\lambda f. f (((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f)) f)) G
\]
\[\theta \text{ Example} \]

\[\text{FACT} = \Theta G \]
\[= ((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f))) G \]
\[\rightarrow (\lambda f. f ((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f)) f)) G \]
\[\rightarrow G ((\lambda t. \lambda f. f(t t f)) (\lambda t. \lambda f. f(t t f)) G) \]
\[\text{FACT} = \Theta G \]

\[\begin{align*}
\quad & = ((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f))) G \\
\quad & \rightarrow (\lambda f. f ((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f)) f)) G \\
\quad & \rightarrow G ((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f)) G) \\
\quad & = G (\Theta G)
\end{align*} \]
\begin{aligned}
\text{FACT} &= \Theta \ G \\
&= ((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f))) \ G \\
&\rightarrow (\lambda f. f ((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f)) f)) \ G \\
&\rightarrow G ((\lambda t. \lambda f. f (t t f)) (\lambda t. \lambda f. f (t t f)) G) \\
&= G (\Theta \ G) \\
&= (\lambda f. \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (f (n - 1))) (\Theta \ G) \\
&\rightarrow \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times ((\Theta \ G) (n - 1)) \\
&= \lambda n. \text{if } n = 0 \text{ then } 1 \text{ else } n \times (\text{FACT} (n - 1))
\end{aligned}