Lecture 11
Weakest Preconditions
Generating Preconditions

To fill in a precondition:

\{ \ \} c \{Q\}

there are many possible preconditions—and some are more useful than others.
Weakest Preconditions

Intuition: The weakest liberal precondition for c and Q is the weakest assertion P such that $\{P\} ~ c ~ \{Q\}$ is valid.
Weakest Preconditions

Intuition: The weakest liberal precondition for \(c \) and \(Q \) is the weakest assertion \(P \) such that \(\{ P \} \ c \ \{ Q \} \) is valid.

More formally...

Definition (Weakest Liberal Precondition)

\(P \) is a weakest liberal precondition of \(c \) and \(Q \) written \(wlp(c, Q) \) if:

\[
\forall \sigma, I. \sigma \models I \ P \iff (C \llbracket c \rrbracket \sigma) \text{ undefined } \lor (C \llbracket c \rrbracket \sigma) \models I \ Q
\]
Weakest Preconditions

\[\text{wlp}(\text{skip}, P) = P \]
Weakest Preconditions

\[\text{wlp}(\text{skip}, P) = P \]
\[\text{wlp}(x := a, P) = P[a/x] \]
Weakest Preconditions

\[\begin{align*}
\text{wlp}(\textbf{skip}, P) & = P \\
\text{wlp}(x := a, P) & = P[a/x] \\
\text{wlp}((c_1; c_2), P) & = \text{wlp}(c_1, \text{wlp}(c_2, P))
\end{align*}\]
Weakest Preconditions

\[\begin{align*}
\text{wlp}(\text{skip}, P) & = P \\
\text{wlp}(x := a, P) & = P[a/x] \\
\text{wlp}((c_1; c_2), P) & = \text{wlp}(c_1, \text{wlp}(c_2, P)) \\
\text{wlp}(\text{if } b \text{ then } c_1 \text{ else } c_2, P) & = (b \implies \text{wlp}(c_1, P)) \land \\
& \quad (\neg b \implies \text{wlp}(c_2, P))
\end{align*} \]
Weakest Preconditions

\[
\begin{align*}
 \text{wlp}(\textbf{skip}, P) &= P \\
 \text{wlp}(x := a, P) &= P[a/x] \\
 \text{wlp}((c_1; c_2), P) &= \text{wlp}(c_1, \text{wlp}(c_2, P)) \\
 \text{wlp}(\textbf{if } b \textbf{ then } c_1 \textbf{ else } c_2, P) &= (b \implies \text{wlp}(c_1, P)) \land (\neg b \implies \text{wlp}(c_2, P)) \\
 \text{wlp}(\textbf{while } b \textbf{ do } c, P) &= \bigwedge_i F_i(P)
\end{align*}
\]
Weakest Preconditions

\[
\begin{align*}
 \text{wlp}(\text{skip}, P) &= P \\
 \text{wlp}(x := a, P) &= P[a/x] \\
 \text{wlp}((c_1; c_2), P) &= \text{wlp}(c_1, \text{wlp}(c_2, P)) \\
 \text{wlp}(\text{if } b \text{ then } c_1 \text{ else } c_2, P) &= (b \implies \text{wlp}(c_1, P)) \land (\neg b \implies \text{wlp}(c_2, P)) \\
 \text{wlp}(\text{while } b \text{ do } c, P) &= \bigwedge_i F_i(P)
\end{align*}
\]

where

\[
\begin{align*}
 F_0(P) &= \text{true} \\
 F_{i+1}(P) &= (\neg b \implies P) \land (b \implies \text{wlp}(c, F_i(P)))
\end{align*}
\]
Applications of Weakest Preconditions

Failing fast: avoid wasting work on bad inputs.

\[p := \text{getPacket}(); \]
\[\text{processPacket}(p); \]
\[\textbf{assert} \ P_{\text{safe}} \]
Applications of Weakest Preconditions

Failing fast: avoid wasting work on bad inputs.

\[p := \text{getPacket}(); \]
\[\text{processPacket}(p); \]
\[\{ P_{\text{safe}} \} \]
Applications of Weakest Preconditions

Failing fast: avoid wasting work on bad inputs.

\[p := \text{getPacket}(); \]
\[\{ P_{\text{filter}}(p) \}; \]
\[\text{processPacket}(p); \]
\[\{ P_{\text{safe}} \} \]
Failing fast: avoid wasting work on bad inputs.

\[p := \text{getPacket}(); \]
\[\text{assert } P_{\text{filter}}(p); \]
\[\text{processPacket}(p); \]
Applications of Weakest Preconditions

Failing fast: avoid wasting work on bad inputs.

```plaintext
p := getPacket();
assert P_{filter}(p);
processPacket(p);
```

P_{filter} should be the *weakest* precondition to avoid ruling out legitimate inputs.

Properties of Weakest Preconditions

Lemma (Correctness of Weakest Preconditions)

\[\forall c \in \text{Com}, Q \in \text{Assn}. \]
\[\models \{ wlp(c, Q) \} \ c \ \{ Q \} \text{ and } \]
\[\forall R \in \text{Assn}. \models \{ R \} \ c \ \{ Q \} \text{ implies } (R \implies wlp(c, Q)) \]
Properties of Weakest Preconditions

Lemma (Correctness of Weakest Preconditions)

\[\forall c \in \textbf{Com}, Q \in \textbf{Assn}. \]
\[\vdash \{ wlp(c, Q) \} c \{ Q \} \text{ and } \]
\[\forall R \in \textbf{Assn}. \vdash \{ R \} c \{ Q \} \text{ implies } (R \implies wlp(c, Q)) \]

Lemma (Provability of Weakest Preconditions)

\[\forall c \in \textbf{Com}, Q \in \textbf{Assn}. \vdash \{ wlp(c, Q) \} c \{ Q \} \]
Soundness and Completeness

Soundness: If we can prove it, then it’s actually true.

Completeness: If it’s true, then a proof exists.
Soundness and Completeness

Soundness: If we can prove it, then it’s actually true.

Definition (Soundness)

If $\vdash \{P\} \c Q$ then $\models \{P\} \c \{Q\}$.

Completeness: If it’s true, then a proof exists.

Definition (Completeness)

If $\models \{P\} \c \{Q\}$ then $\vdash \{P\} \c \{Q\}$.
Kurt Gödel vs. Sir Tony Hoare
Relative Completeness

Theorem (Cook (1974))

\[\forall P, Q \in \text{Assn}, c \in \text{Com}. \quad \models \{P\} c \{Q\} \implies \vdash \{P\} c \{Q\}. \]
Relative Completeness

Theorem (Cook (1974))

\[\forall P, Q \in \text{Assn}, c \in \text{Com}. \quad \models \{P\} c \{Q\} \quad \text{implies} \quad \vdash \{P\} c \{Q\}. \]

Proof Sketch.

Let \(\{P\} c \{Q\} \) be a valid partial correctness specification.

By the first Lemma we have \(\models P \implies \text{wlp}(c, Q) \).

By the second Lemma we have \(\vdash \{\text{wlp}(c, Q)\} c \{Q\} \).

We conclude \(\vdash \{P\} c \{Q\} \) using the CONSEQUENCE rule.