1 Lambda calculus evaluation

There are many different evaluation strategies for the λ-calculus. The most permissive is full β reduction, which allows any redex—i.e., any expression of the form \((\lambda x. e_1) e_2\)—to step to \(e_1\{e_2/x\}\) at any time. It is defined formally by the following small-step operational semantics rules:

\[
\begin{align*}
&\frac{e_1 \rightarrow e_1'}{e_1 e_2 \rightarrow e_1' e_2} & &\frac{e_2 \rightarrow e_2'}{e_1 e_2 \rightarrow e_1 e_2'} & &\frac{e_1 \rightarrow e_1'}{\lambda x. e_1 \rightarrow \lambda x. e_1'} & &\frac{\beta (\lambda x. e_1) e_2 \rightarrow e_1\{e_2/x\}}{}
\end{align*}
\]

The call by value (CBV) strategy enforces a more restrictive strategy: it only allows an application to reduce after its argument has been reduced to a value (i.e., a λ-abstraction) and does not allow evaluation under a λ. It is described by the following small-step operational semantics rules (here we show a left-to-right version of CBV):

\[
\begin{align*}
&\frac{e_1 \rightarrow e_1'}{e_1 e_2 \rightarrow e_1' e_2} & &\frac{e_2 \rightarrow e_2'}{v_1 e_2 \rightarrow v_1 e_2'} & &\frac{\beta (\lambda x. e_1) v_2 \rightarrow e_1\{v_2/x\}}{}
\end{align*}
\]

Finally, the call by name (CBN) strategy allows an application to reduce even when its argument is not a value but does not allow evaluation under a λ. It is described by the following small-step operational semantics rules:

\[
\begin{align*}
&\frac{e_1 \rightarrow e_1'}{e_1 e_2 \rightarrow e_1' e_2} & &\beta (\lambda x. e_1) e_2 \rightarrow e_1\{e_2/x\}
\end{align*}
\]

2 Confluence

It is not hard to see that the full β reduction strategy is non-deterministic. This raises an interesting question: does the choices made during the evaluation of an expression affect the final result? The answer turns out to be no: full β reduction is confluent in the following sense:

Theorem (Confluence). *If \(e \rightarrow^* e_1\) and \(e \rightarrow^* e_2\) then there exists \(e'\) such that \(e_1 \rightarrow^* e'\) and \(e_2 \rightarrow^* e'\).*

Confluence can be depicted graphically as follows:

\[
\begin{align*}
&\frac{e_1 \rightarrow^* e' \text{ and } e_2 \rightarrow^* e'}{e \rightarrow^* e'}
\end{align*}
\]

Confluence is often also called the Church–Rosser property.
3 Substitution

Each of the evaluation relations for λ-calculus has a β defined in terms of a substitution operation on expressions. Because the expressions involved in the substitution may share some variable names (and because we are working up to α-equivalence) the definition of this operation is slightly subtle and defining it precisely turns out to be trickier than might first appear.

As a first attempt, consider an obvious (but incorrect) definition of the substitution operator. Here we are substituting e for x in some other expression:

$$
\begin{align*}
y\{e/x\} &= \begin{cases} e & \text{if } y = x \\ y & \text{otherwise} \end{cases} \\
(e_1 e_2)\{e/x\} &= (e_1\{e/x\}) (e_2\{e/x\}) \\
(\lambda y. e_1)\{e/x\} &= \lambda y. e_1\{e/x\} \quad \text{where } y \neq x
\end{align*}
$$

The intuitive idea is that the last rule relies on α-equivalence to “rewrite” abstractions that use x so they do not conflict. Unfortunately, this definition produces the wrong results when we substitute an expression with free variables under a λ. For example,

$$(\lambda y. x)\{y/x\} = (\lambda y. y)$$

To fix this problem, we need to revise our definition so that when we substitute under a λ we do not accidentally bind variables in the expression we are substituting. The following definition correctly implements capture-avoiding substitution:

$$
\begin{align*}
y\{e/x\} &= \begin{cases} e & \text{if } y = x \\ y & \text{otherwise} \end{cases} \\
(e_1 e_2)\{e/x\} &= (e_1\{e/x\}) (e_2\{e/x\}) \\
(\lambda y. e_1)\{e/x\} &= \lambda y. (e_1\{e/x\}) \quad \text{where } y \neq x \text{ and } y \notin \text{fv}(e)
\end{align*}
$$

Note that in the case for λ-abstractions, we require that the bound variable y be different from the variable x we are substituting for and that y not appear in the free variables of e, the expression we are substituting. Because we work up to α-equivalence, we can always pick y to satisfy these side conditions. For example, to calculate $\lambda z. x z \{ (w y z)/x \}$ we first rewrite $\lambda z. x z$ to $\lambda u. x u$ and then apply the substitution, obtaining $\lambda u. (w y z) u$ as the result.