Lecture 28
Existential Types
Namespaces

It’s no fun to program in a language with a single, global namespace: C, FORTRAN, and PHP until depressingly recently.
Namespaces

It’s no fun to program in a language with a single, global namespace: C, FORTRAN, and PHP until depressingly recently.

Components of a large program have to worry about name collisions.

And components become tightly coupled: any component can use a name defined by any other.
Modularity

A module is a collection of named entities that are related.

Modules provide separate namespaces: different modules can use the same names without worrying about collisions.

Modules can:

• Choose which names to export
• Choose which names to keep hidden
• Hide implementation details
Existential Types

In the polymorphic λ-calculus, we introduced *universal* quantification for types.

\[\tau ::= \cdots \mid X \mid \forall X. \tau \]
Existential Types

In the polymorphic λ-calculus, we introduced *universal* quantification for types.

$$\tau ::= \cdots \mid X \mid \forall X. \tau$$

If we have \forall, why not \exists? What would *existential* type quantification do?

$$\tau ::= \cdots \mid X \mid \exists X. \tau$$
Existential Types

Together with records, existential types let us *hide* the implementation details of an interface.
Existential Types

Together with records, existential types let us hide the implementation details of an interface.

\[\exists \text{Counter.} \]
\[
\{ \text{new : Counter,}
\text{get : Counter } \rightarrow \text{int,}
\text{inc : Counter } \rightarrow \text{Counter} \}
\]
Existential Types

Together with records, existential types let us *hide* the implementation details of an interface.

$$\exists \text{Counter}.
\begin{array}{l}
\{ \text{new} : \text{Counter},
\text{get} : \text{Counter} \rightarrow \text{int},
\text{inc} : \text{Counter} \rightarrow \text{Counter} \}
\end{array}$$

Here, the *witness type* might be *int*:

$$\begin{array}{l}
\{ \text{new} : \text{int},
\text{get} : \text{int} \rightarrow \text{int},
\text{inc} : \text{int} \rightarrow \text{int} \}
\end{array}$$
Existential Types

Let’s extend our STLC with existential types:

\[\tau ::= \text{int} \]

\[| \tau_1 \rightarrow \tau_2 \]

\[| \{ l_1 : \tau_1, \ldots, l_n : \tau_n \} \]

\[| \exists X. \tau \]

\[| X \]
We’ll tag the values of existential types with the witness type.
We’ll tag the values of existential types with the witness type.

A value has type $\exists X. \tau$ is a pair $\{\tau', v\}$
where v has type $\tau\{\tau'/X\}$.
We’ll tag the values of existential types with the witness type.

A value has type $\exists X. \tau$ is a pair $\{\tau', v\}$ where v has type $\tau\{\tau'/X\}$.

We’ll add new operations to construct and destruct these pairs:

pack $\{\tau_1, e\}$ as $\exists X. \tau_2$

unpack $\{X, x\} = e_1$ in e_2
Syntax

e ::= x
| \lambda x: \tau . e
| e_1 e_2
| n
| e_1 + e_2
| \{ l_1 = e_1, \ldots, l_n = e_n \}
| e.l
| pack \{ \tau_1, e \} as \exists X. \tau_2
| unpack \{ X, x \} = e_1 \text{ in } e_2

v ::= n
| \lambda x: \tau . e
| \{ l_1 = v_1, \ldots, l_n = v_n \}
| pack \{ \tau_1, v \} as \exists X. \tau_2
Dynamic Semantics

\[E ::= \ldots \]

\[\mid \text{pack} \{ \tau_1, E \} \text{ as } \exists X. \tau_2 \]

\[\mid \text{unpack} \{ X, x \} = E \text{ in } e \]

\[\text{unpack} \{ X, x \} = (\text{pack} \{ \tau_1, v \} \text{ as } \exists Y. \tau_2) \text{ in } e \rightarrow e\{v/x\}\{\tau_1/X\} \]
\[\Delta, \Gamma \vdash e : \tau_2 \{ \tau_1 / X \} \]
\[\Delta, \Gamma \vdash \text{pack } \{ \tau_1, e \} \text{ as } \exists X. \tau_2 : \exists X. \tau_2 \]
The side condition $\Delta \vdash \tau_2 \text{ok}$ ensures that the existentially quantified type variable X does not appear free in τ_2.
let counterADT =
pack { int,
 { new = 0,
 get = \i:int. i,
 inc = \i:int. i + 1 } }

as

\exists Counter.

{ new : Counter,
 get : Counter \to int,
 inc : Counter \to Counter }
Example

Here’s how to use the existential value `counterADT`:

```
unpack { T, c } = counterADT in
let y = c.new in
  c.get (c.inc (c.inc y))
```
We can define alternate, equivalent implementations of our counter...

```plaintext
let counterADT =
pack {{x:int},
  { new = {x = 0},
    get = λr:{x:int}. r.x,
    inc = λr:{x:int}. r.x + 1 } }

as
  ∃Counter.
  { new : Counter,
    get : Counter → int,
    inc : Counter → Counter } }
in . . .
```
Existentials and Type Variables

In the typing rule for unpack, the side condition $\Delta \vdash \tau_2 \text{ ok}$ prevents type variables from “leaking out” of unpack expressions.
Existentials and Type Variables

In the typing rule for unpack, the side condition $\Delta \vdash \tau_2 \text{ ok}$ prevents type variables from “leaking out” of unpack expressions.

This rules out programs like this:

```
let m =
    pack {\textbf{int}, \{a = 5, f = \lambda x:\textbf{int}. x + 1\}} as $\exists X. \{a:X, f:X \rightarrow X\}$
in
unpack \{T, x\} = m in x.f x.a
```

where the type of $x.f x.a$ is just T.
We can encode existentials using universals!

The idea is to use a Church encoding where an existential value is a function that takes a type and then calls a continuation.
Encoding Existentials

We can encode existentials using universals!

The idea is to use a Church encoding where an existential value is a function that takes a type and then calls a continuation.

\[\exists X. \tau \triangleq \forall Y. (\forall X. \tau \rightarrow Y) \rightarrow Y \]

\text{pack} \{ \tau_1, e \} \text{ as } \exists X. \tau_2 \triangleq \Lambda Y. \lambda f : (\forall X. \tau_2 \rightarrow Y). f[\tau_1] e

\text{unpack} \{ X, x \} = e_1 \text{ in } e_2 \triangleq e_1[\tau_2] (\Lambda X. \lambda x : \tau_1. e_2)

where \(e_1 \) has type \(\exists X. \tau_1 \) and \(e_2 \) has type \(\tau_2 \)