Lecture 25
Type Inference
Review: Polymorphic λ-Calculus

Syntax

$$e ::= n \mid x \mid \lambda x:\tau. e \mid e_1 e_2 \mid \Lambda X. e \mid e[\tau]$$

$$v ::= n \mid \lambda x:\tau. e \mid \Lambda X. e$$

Dynamic Semantics

$$E ::= [\cdot] \mid E e \mid v E \mid E[\tau]$$

$$e \rightarrow e' \quad \frac{}{E[e] \rightarrow E[e']} \quad \frac{}{(\lambda x:\tau. e) v \rightarrow e\{v/x\}} \quad \frac{}{(\Lambda X. e)[\tau] \rightarrow e\{\tau/X\}}$$
Review: Polymorphic λ-Calculus

- $\Delta, \Gamma \vdash n : \text{int}$
- $\Delta, \Gamma, x : \tau \vdash e : \tau'$ $\Delta \vdash \tau \text{ ok}$
 \[\Delta, \Gamma \vdash \lambda x : \tau. e : \tau \rightarrow \tau' \]
- $\Gamma(x) = \tau$
 \[\Delta, \Gamma \vdash x : \tau \]
- $\Delta, \Gamma \vdash e_1 : \tau \rightarrow \tau'$ $\Delta, \Gamma \vdash e_2 : \tau$
 \[\Delta, \Gamma \vdash e_1 e_2 : \tau' \]
- $\Delta \cup \{X\}, \Gamma \vdash e : \tau$
 \[\Delta, \Gamma \vdash \forall X. e : \forall X. \tau \]
- $\Delta, \Gamma \vdash e : \forall X. \tau'$ $\Delta \vdash \tau \text{ ok}$
 \[\Delta, \Gamma \vdash e_{\{\tau/X\}} : \tau' \]

- $\Delta, \Gamma \vdash e [\tau] : \tau'\{\tau/X\}$
Polymorphism let us write a doubling function that works for
any type of function:

$$\text{double} \triangleq \forall X. \lambda f:X \to X. \lambda x:X. f(fx).$$

The type of this expression is:

$$\forall X. (X \to X) \to X \to X$$

You can use the polymorphic function by providing a type:

$$\text{double [int]} \ (\lambda n:\text{int. } n + 1) \ 7$$
Type Inference

In languages like OCaml, programmers don’t have to annotate their programs with $\forall X. \tau$ or $e[\tau]$.
In languages like OCaml, programmers don’t have to annotate their programs with $\forall X. \tau$ or $e [\tau]$.

For example, we can write:

```ocaml
let double f x = f (f x)
```

and OCaml will figure out that the type is:

```
('a -> 'a) -> 'a -> 'a
```

which is equivalent to the same System F type:

```
$\forall A. (A \rightarrow A) \rightarrow A \rightarrow A$
```
In languages like OCaml, programmers don’t have to annotate their programs with $\forall X. \tau$ or $e[\tau]$.

We can also write

$$\text{double \ (fun \ x \to \ x+1) \ 7}$$

and OCaml will infer that the polymorphic function `double` is instantiated at the type `int`.
However, polymorphism in OCaml and other MLs, has some restrictions to ensure that type inference remains *decidable*.
However, polymorphism in OCaml and other MLs, has some restrictions to ensure that type inference remains *decidable*. These restrictions, called *prenex polymorphism*, stipulate that \foralls may only appear in the “outermost” position.
ML Polymorphism

However, polymorphism in OCaml and other MLs, has some restrictions to ensure that type inference remains *decidable*. These restrictions, called *prenex polymorphism*, stipulate that \foralls may only appear in the “outermost” position.

Examples

- Prenex: $\forall \alpha. \alpha \rightarrow \alpha$
ML Polymorphism

However, polymorphism in OCaml and other MLs, has some restrictions to ensure that type inference remains *decidable*.

These restrictions, called *prenex polymorphism*, stipulate that \foralls may only appear in the “outermost” position.

Examples

- Prenex: $\forall \alpha. \alpha \to \alpha$
- Not prenex: $(\forall \alpha. \alpha \to \alpha) \to \text{int}$
ML Polymorphism

However, polymorphism in OCaml and other MLs, has some restrictions to ensure that type inference remains *decidable*. These restrictions, called *prenex polymorphism*, stipulate that \foralls may only appear in the “outermost” position.

Examples

- Prenex: $\forall \alpha. \alpha \rightarrow \alpha$
- Not prenex: $(\forall \alpha. \alpha \rightarrow \alpha) \rightarrow \text{int}$

These restrictions have the following practical ramifications:

- Can’t instantiate type variables with polymorphic types
- Can’t put a polymorphic type on the left of an arrow
Example

These restrictions mean that certain terms that are typeable in System F are not typeable in ML!
Example

These restrictions mean that certain terms that are typeable in System F are not typeable in ML!

```
OCaml version 4.01.0

# fun x -> x x;;
Error: This expression has type 'a -> 'b
      but an expression was expected of type 'a
      The type variable 'a occurs inside 'a -> 'b
```
Type Inference

Type inference may be undecidable for the polymorphic λ-calculus and OCaml, but it is possible for the simply-typed λ-calculus!
Type Inference

Type inference may be undecidable for the polymorphic \(\lambda\)-calculus and OCaml, but it is possible for the simply-typed \(\lambda\)-calculus!

Type inference for the STLC means guessing a \(\tau\) in every abstraction in an untyped version:

\[
\lambda x. \, e
\]

to produce a typed program:

\[
\lambda x : \tau. \, e
\]

that we can use in the typing rule for functions.
Example

Here’s an untyped program:

\[\lambda a. \lambda b. \lambda c. \text{if } a \ (b + 1) \text{ then } b \text{ else } c \]
Example

Here’s an untyped program:
\[\lambda a. \lambda b. \lambda c. \text{if } a \ (b + 1) \text{ then } b \text{ else } c \]

Informal inference:
Example

Here’s an untyped program:
\[
\lambda a. \lambda b. \lambda c. \text{if } a \ (b + 1) \text{ then } b \text{ else } c
\]

Informal inference:
- \(b \) must be \textbf{int}
Example

Here’s an untyped program:
\[\lambda a. \lambda b. \lambda c. \text{if } a (b + 1) \text{ then } b \text{ else } c \]

Informal inference:
- \(b \) must be \textbf{int}
- \(a \) must be some kind of function
Example

Here’s an untyped program:
\[\lambda a. \lambda b. \lambda c. \text{if } a (b + 1) \text{ then } b \text{ else } c \]

Informal inference:
- \(b \) must be \textbf{int}
- \(a \) must be some kind of function
- the argument type of \(a \) must be the same as \(b + 1 \)
Here’s an untyped program:
\[
\lambda a. \lambda b. \lambda c. \text{if } a \ (b + 1) \text{ then } b \text{ else } c
\]

Informal inference:
- \(b \) must be \textbf{int}
- \(a \) must be some kind of function
- the argument type of \(a \) must be the same as \(b + 1 \)
- the result type of \(a \) must be \textbf{bool}
Example

Here’s an untyped program:
\[\lambda a. \lambda b. \lambda c. \text{if } a \ (b + 1) \text{ then } b \text{ else } c \]

Informal inference:
- \(b \) must be \textbf{int}
- \(a \) must be some kind of function
- the argument type of \(a \) must be the same as \(b + 1 \)
- the result type of \(a \) must be \textbf{bool}
- the type of \(c \) must be the same as \(b \)
Example

Here’s an untyped program:
\[\lambda a. \lambda b. \lambda c. \text{if } a \ (b + 1) \text{ then } b \text{ else } c \]

Informal inference:
- \(b \) must be \textbf{int}
- \(a \) must be some kind of function
- the argument type of \(a \) must be the same as \(b + 1 \)
- the result type of \(a \) must be \textbf{bool}
- the type of \(c \) must be the same as \(b \)

Putting all these pieces together:
\[\lambda a : \textbf{int} \rightarrow \textbf{bool}. \lambda b : \textbf{int}. \lambda c : \textbf{int}. \text{if } a \ (b + 1) \text{ then } b \text{ else } c \]
Let’s automate type inference!

Given a typing context Γ and an expression e, it generates a set of constraints—equations between types. If these constraints are solvable, then e can be well-typed in Γ.

A solution to a set of constraints is a types substitution σ that, for each equation, makes both sides syntactically equal.
Let’s automate type inference!

We introduce a new judgment:

\[\Gamma \vdash e : \tau \mid C \]

Given a typing context \(\Gamma \) and an expression \(e \), it generates a set of constraints—equations between types.
Let’s automate type inference!

We introduce a new judgment:

\[\Gamma \vdash e : \tau \mid C \]

Given a typing context \(\Gamma \) and an expression \(e \), it generates a set of *constraints*—equations between types.

If these constraints are solvable, then \(e \) can be well-typed in \(\Gamma \).

A solution to a set of constraints is a *type substitution* \(\sigma \) that, for each equation, makes both sides syntactically equal.
Let’s define the type inference judgment for this STLC language:

\[
\begin{align*}
 e & ::= x \mid \lambda x: \tau. \ e \mid e_1 \ e_2 \mid n \mid e_1 + e_2 \\
 \tau & ::= \text{int} \mid X \mid \tau_1 \to \tau_2
\end{align*}
\]

You can use a type variable X wherever you want to have a type inferred.
Constraint-Based Typing Judgment

\[\Gamma(x) = \tau \]
\[
\frac{\Gamma \vdash x : \tau | \emptyset}{\text{CT-VAR}}
\]
Constraint-Based Typing Judgment

\[\Gamma(x) = \tau \]
\[\Gamma \vdash x : \tau \mid \emptyset \quad \text{CT-VAR} \]

\[\Gamma \vdash n : \text{int} \mid \emptyset \quad \text{CT-INT} \]
Constraint-Based Typing Judgment

\[\Gamma(x) = \tau \]
\[\Gamma \vdash x : \tau \mid \emptyset \] CT-VAR

\[\Gamma \vdash n : \text{int} \mid \emptyset \] CT-INT

\[\Gamma \vdash e_1 : \tau_1 \mid C_1 \quad \Gamma \vdash e_2 : \tau_2 \mid C_2 \]
\[\Gamma \vdash e_1 + e_2 : \text{int} \mid C_1 \cup C_2 \cup \{\tau_1 = \text{int}, \tau_2 = \text{int}\} \] CT-ADD
Constraint-Based Typing Judgment

\[
\begin{align*}
\Gamma(x) &= \tau \\
\Gamma \vdash x : \tau & \quad \text{CT-VAR} \\
\Gamma \vdash n : \text{int} & \quad \text{CT-INT}
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash e_1 : \tau_1 & \quad C_1 \\
\Gamma \vdash e_2 : \tau_2 & \quad C_2 \\
\Gamma \vdash e_1 + e_2 : \text{int} & \quad C_1 \cup C_2 \cup \{\tau_1 = \text{int}, \tau_2 = \text{int}\} \\
\end{align*}
\]

\[
\begin{align*}
\Gamma, x : \tau_1 \vdash e : \tau_2 & \quad C \\
\Gamma \vdash \lambda x : \tau_1 . e : \tau_1 \rightarrow \tau_2 & \quad C \\
\end{align*}
\]
Constraint-Based Typing Judgment

\[\Gamma(x) = \tau \]
\[\Gamma \vdash x : \tau \mid \emptyset \quad \text{CT-VAR} \]
\[\Gamma \vdash n : \text{int} \mid \emptyset \quad \text{CT-INT} \]

\[\Gamma \vdash e_1 : \tau_1 \mid C_1 \quad \Gamma \vdash e_2 : \tau_2 \mid C_2 \]
\[\Gamma \vdash e_1 + e_2 : \text{int} \mid C_1 \cup C_2 \cup \{\tau_1 = \text{int}, \tau_2 = \text{int}\} \quad \text{CT-ADD} \]

\[\Gamma, x : \tau_1 \vdash e : \tau_2 \mid C \]
\[\Gamma \vdash \lambda x : \tau_1. e : \tau_1 \rightarrow \tau_2 \mid C \quad \text{CT-ABS} \]

\[\Gamma \vdash e_1 : \tau_1 \mid C_1 \quad \Gamma \vdash e_2 : \tau_2 \mid C_2 \]
\[X \text{ fresh} \quad C' = C_1 \cup C_2 \cup \{\tau_1 = \tau_2 \rightarrow X\} \]
\[\Gamma \vdash e_1 \ e_2 : X \mid C' \quad \text{CT-APP} \]
Solving Constraints

A *type substitution* is a finite map from type variables to types.

Example: The substitution

\[
[X \mapsto \text{int}, \ Y \mapsto \text{int} \to \text{int}]
\]

maps type variable \(X\) to \text{int} and \(Y\) to \text{int} \to \text{int}.
We can define substitution of type variables formally:
We can define substitution of type variables formally:

$$\sigma(X) \triangleq \begin{cases}
\tau & \text{if } X \mapsto \tau \in \sigma \\
X & \text{if } X \text{ not in the domain of } \sigma
\end{cases}$$
We can define substitution of type variables formally:

\[
\sigma(X) \triangleq \begin{cases}
\tau & \text{if } X \mapsto \tau \in \sigma \\
X & \text{if } X \text{ not in the domain of } \sigma
\end{cases}
\]

\[
\sigma(\text{int}) \triangleq \text{int}
\]
Type Substitution

We can define substitution of type variables formally:

\[
\sigma(X) \triangleq \begin{cases}
\tau & \text{if } X \mapsto \tau \in \sigma \\
X & \text{if } X \text{ not in the domain of } \sigma
\end{cases}
\]

\[
\sigma(\text{int}) \triangleq \text{int}
\]

\[
\sigma(\tau \to \tau') \triangleq \sigma(\tau) \to \sigma(\tau')
\]
Type Substitution

We can define substitution of type variables formally:

\[
\sigma(X) \triangleq \begin{cases}
\tau & \text{if } X \mapsto \tau \in \sigma \\
X & \text{if } X \text{ not in the domain of } \sigma
\end{cases}
\]

\[
\sigma(\text{int}) \triangleq \text{int}
\]

\[
\sigma(\tau \rightarrow \tau') \triangleq \sigma(\tau) \rightarrow \sigma(\tau')
\]

We don’t need to worry about avoiding variable capture: all type variables are “free.”
We can define substitution of type variables formally:

\[
\sigma(X) \triangleq \begin{cases}
\tau & \text{if } X \mapsto \tau \in \sigma \\
X & \text{if } X \text{ not in the domain of } \sigma
\end{cases}
\]

\[
\sigma(\text{int}) \triangleq \text{int}
\]

\[
\sigma(\tau \to \tau') \triangleq \sigma(\tau) \to \sigma(\tau')
\]

We don’t need to worry about avoiding variable capture: all type variables are “free.”

Given two substitutions \(\sigma_1\) and \(\sigma_2\), we write \(\sigma_1 \circ \sigma_2\) for their composition: \((\sigma_1 \circ \sigma_2)(\tau) = \sigma_1(\sigma_2(\tau))\).
Unification

Our constraints are of the form $\tau = \tau'$.
Unification

Our constraints are of the form $\tau = \tau'$.

We say that a substitution σ \textit{unifies} constraint $\tau = \tau'$ if $\sigma(\tau) = \sigma(\tau')$.

We say that substitution σ \textit{satisfies} (or \textit{unifies}) set of constraints C if σ unifies every constraint in C.
Unification

If:

- $\Gamma \vdash e : \tau \mid C$, and
- σ satisfies C,

then e has type τ' under Γ, where $\sigma(\tau) = \tau'$.

If there are no substitutions that satisfy C, then e is not typeable.
Unification

If:
- $\Gamma \vdash e : \tau \mid C$, and
- σ satisfies C,
then e has type τ' under Γ,
where $\sigma(\tau) = \tau'$.

If there are no substitutions that satisfy C, then e is not typeable.

So let’s find a substitution σ that unifies a set of constraints C!
Unification Algorithm

\[
\text{unify}(\tau; \tau') \triangleq \begin{cases}
 \varnothing & \text{if } \tau = \tau' \\
 \text{unify}(C'; \tau) & \text{if } \tau = X \text{ and } X \text{ not a free variable of } \tau' \\
 \text{unify}(C'; f \tau / X g) \left[X \mapsto \tau' \right] & \text{if } \tau' = X \text{ and } X \text{ not a free variable of } \tau \\
 \text{unify}(C; f \tau_0 = \tau'_0, \tau_1 = \tau'_1 g) & \text{if } \tau = \tau_0! \tau_1 \text{ and } \tau' = \tau'_0! \tau'_1 \\
 \text{fail} & \text{else}
\end{cases}
\]
Unification Algorithm

\[\text{unify}(\emptyset) \triangleq [] \quad \text{(the empty substitution)} \]
Unification Algorithm

\[\text{unify}(\emptyset) \triangleq [] \quad \text{(the empty substitution)}\]

\[\text{unify}(\{\tau = \tau'\} \cup C') \triangleq\]

if \(\tau = \tau'\) then
 \[\text{unify}(C')\]
Unification Algorithm

\[\text{unify}(\emptyset) \triangleq [] \quad \text{(the empty substitution)} \]

\[\text{unify}(\{ \tau = \tau' \} \cup C') \triangleq \]

if \(\tau = \tau' \) then

\[\text{unify}(C') \]

else if \(\tau = X \) and \(X \) not a free variable of \(\tau' \) then

\[\text{unify}(C'\{\tau'/X\}) \circ [X \mapsto \tau'] \]
Unification Algorithm

\[\text{unify}(\emptyset) \triangleq [] \quad \text{(the empty substitution)}\]

\[\text{unify}(\{\tau = \tau'\} \cup C') \triangleq\]

if \(\tau = \tau'\) then
\[\text{unify}(C')\]
else if \(\tau = X\) and \(X\) not a free variable of \(\tau'\) then
\[\text{unify}(C'\{\tau' / X\}) \circ [X \mapsto \tau']\]
else if \(\tau' = X\) and \(X\) not a free variable of \(\tau\) then
\[\text{unify}(C'\{\tau / X\}) \circ [X \mapsto \tau]\]
Unification Algorithm

\[\text{unify}(\emptyset) \triangleq [] \text{ (the empty substitution)} \]

\[\text{unify}(\{\tau = \tau'\} \cup C') \triangleq \]

if \(\tau = \tau' \) then
 \[\text{unify}(C') \]

else if \(\tau = X \) and \(X \) not a free variable of \(\tau' \) then
 \[\text{unify}(C'\{\tau'/X\}) \circ [X \mapsto \tau'] \]

else if \(\tau' = X \) and \(X \) not a free variable of \(\tau \) then
 \[\text{unify}(C'\{\tau/X\}) \circ [X \mapsto \tau] \]

else if \(\tau = \tau_0 \rightarrow \tau_1 \) and \(\tau' = \tau'_0 \rightarrow \tau'_1 \) then
 \[\text{unify}(C' \cup \{\tau_0 = \tau'_0, \tau_1 = \tau'_1\}) \]
Unification Algorithm

\[\text{unify} (\emptyset) \triangleq [] \quad (\text{the empty substitution})\]

\[\text{unify} (\{ \tau = \tau' \} \cup C') \triangleq\]

if \(\tau = \tau' \) then
 \[\text{unify} (C')\]
else if \(\tau = X \) and \(X \) not a free variable of \(\tau' \) then
 \[\text{unify} (C'\{\tau'/X\}) \circ [X \mapsto \tau']\]
else if \(\tau' = X \) and \(X \) not a free variable of \(\tau \) then
 \[\text{unify} (C'\{\tau/X\}) \circ [X \mapsto \tau]\]
else if \(\tau = \tau_0 \rightarrow \tau_1 \) and \(\tau' = \tau'_0 \rightarrow \tau'_1 \) then
 \[\text{unify} (C' \cup \{ \tau_0 = \tau'_0, \tau_1 = \tau'_1 \})\]
else
 fail
The unification algorithm always terminates.
Unification Properties

The unification algorithm always terminates.

The solution, if it exists, is the most general solution: if $\sigma = \text{unify}(C)$ and σ' is a solution to C, then there is some σ'' such that $\sigma' = (\sigma'' \circ \sigma)$.