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Semester in Review

C54110 Home Project Resources Schedule Syllabus C©MS

Schedule

Date
September 2
September 4

September 7
September 9
September 11

September 14
September 16
September 18

September 21
September 23
September 25

September 28
September 30
October 2

October 5
October 7
October 9

October 12
October 14

Topic
Course Overview
Introduction to Semantics

inductive Definitions
Properties and Inductive Proofs
Inductive Proof and Large -Step Semantics

The IMP Language
IMP Properties
More IMP Proofs

Denotational Semantics
Denotational Semantics Examples
Acomatic Semantics

Hoare Logic
Hoare Logic Examples
Weakest Preconditions

A Calculus
More A Calculus and Substitution
de 8ruijn and Combinators

Encodings
Mid semester break

Notes

shides video
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siides notes video
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October 16

October 19
October 21
October 23

October 26
October 28
October 30

November 2
Naovember 4
Naovember &

November 9
November 11l
November 13

November 16
November 18
Navember 20

November 23
November 25
Naovember 27

Navember 30
December 2
December 4

December 7
December S
December 11

December 14
December 16

Encodings and Fixed Point Combinators
Definitional Translation
Contnuations

Types
More Types

Proving Type Soundness
More Proving Type Soundness

Normalzation
Advanced Types
Polymorphesm

Type Inference
Recursive Types
Records and Subtyping

Study days
Semi-finals

Semi-finals

Semi-finals
No class (Thanksgiving)
No class (Thanksgiving)

Existential Types
Propasitions a5 Types
Dependent Types
Concurrency

Probabilistic Semantics
After 4110

DSLs and Bidirectional Programming
Victory Lap

shides notes video

slides notes video

slides notes video

slides notes video

same shdes same notes video

slides notes video

same shdes same notes video

shides notes video

slides notes video
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shides notes video
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slides notes video

notes video code

slides video
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slides video

HWwadue

HWS due

HWE due

Take - Home Prebm 2

Project Alpha due

Project Beta due

Homework 7 due

Homework 8 due
Final Project due
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Schedule

Date

September 11

September 14
September 16
September 18

September 21
September 23
September 25

September 28
September 30
October 2

October 5
October 7
October 9

October 12
October 14

Topic

Semester in Review

Project Resources Schedule Syllabus CMS Campuswire

Notes

- _Mathematicai Preliminaries

inductive Proof and Large-Step Semantics

The IMP Language
IMP Propertics
More IMP Proofs

Denotational Semantics
Denotational Semantics Examples
Aoomatic Semantics

Hoare Logic

Hoare Logic Examples
Weakest Preconditions

A Calculus

More A Calculus and Substitution
de 8ruijn and Combinators

Encodings

Mid semester break
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slides notes video

same shdes same notes wheteboard 1 whiteboard 2 video-1 wdeo 2
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October 16

October 19
October 21
October 23

October 26
October 28
October 30

Navember 2
Naovember 4
Naovember &

November 9
November 11
November 13

November 16
November 18
Navember 20

November 23
November 25
Naovember 27

Navember 30
December 2
December 4

December 7
December S
December 11

December 14
December 16

Encodings and Fixed Point Combinators
Definitional Translation
Contnuations

Types
More Types

Proving Type Soundness
More Proving Type Soundness

Normalzation
Advanced Types
Polymorphesm

Type Inference
Recursive Types
Records and Subtyping

Study days
Semi-finals
Semi-finals

Semi-finals
No class (Thanksgiving)
No class (Thanksgiving)

Existential Types
Propasitions as Types
Dependent Types
Concurrency

Probabilistic Semantics
After 4110

DSLs and Bidirectional Programming
Victory Lap
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Homework 7 due

Homework 8 due
Final Project due
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Schedule

Date

September 21
September 23
September 25

September 28
September 30
October 2

October 5
October 7
October 9

October 12
October 14

Topic

Project Resources Schedule Syllabus

Notes

(MS Campuswire

- _Mathematicai Preliminaries

e L OperatiOnal Semantics

Denotational Semantics

Denotational Semantics Examples

Aoomatic Semantics

Hoare Logic
Hoare Logic Examples
Weakest Preconditions

A Calculus

More A Calculus and Substitution

de 8ruijn and Combinators

Encodings
Mid semester break
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December 2
December 4

December 7
December S
December 11

December 14
December 16

Semester in Review

Encodings and Fixed Point Combinators
Definitional Translation
Continuations

Types

More Types
Proving Type Soundness
More Proving Type Soundness

Normalzation
Advanced Types
Polymorphesm

Type Inference
Recursive Types
Records and Subtyping

Study days
Semi-finals
Semi-finals

Semi-finals
No class (Thanksgiving)
No class (Thanksgiving)

Existential Types
Propasitions a5 Types
Dependent Types
Concurrency

Probabilistic Semantics
After 4110

DSLs and Bidirectional Programming
Victory Lap
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C54110 Home

Date Topic

- ,Mathematicai Preliminaries
OperatiOnal Semantics

Denotational Semantics

September28 Hoare Logic
September 30 Hoare Logic Examples

October 2 Weakest Preconditions

October 5 A Calculus

October 7 More A Calculus and Substitution
October 9 de 8ruijn and Combinators

October 12 Encodings
October 14 Mid - semester break
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Encodings and Fixed Point Combinators
Definitional Translation
Continuations

Types

More Types
Proving Type Soundness
More Proving Type Soundness

Normalzation
Advanced Types
Polymorphesm

Type Inference
Recursive Types
Records and Subtyping

Semi-finals
No class (Thanksgiving)
No class (Thanksgiving)

Existential Types
Propasitions a5 Types
Dependent Types

Concurrency
Probabilistic Semantics
After 4110

OSLs and Bidirectional Programming
Victory Lap
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C54110 Home Project Resources Schedule Syllabus CMS  Campuswire

Schedule

Date

October 5
October 7
October

October 12
October 14

Topic

Semester in Review

Notes

| .'Mathematicaf Preliminaries

Operational Semantics

Denotational Semantics

~Axiomatic Semantics

A Calculus
More A Calculus and Substitution
de 8ruijn and Combinators

Encodings
Mid semester break
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October 16

October 19
October 21
October 23

October 26
October 28
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November 2
November 4
November &

November 9
November 11
November 13

November 16
November 18
November 20

November 23
Navember 25
November 27

November 30
December 2
December 4

December 7
December S
December 11

ODecember 14
December 16

Encodings and Fixed Point Combinators
Definitional Translation
Contnuations

Types

More Types
Proving Type Soundness
More Proving Type Soundness

Normalzation
Advanced Types
Polymorphesm

Type Inference
Recursive Types
Records and Subtyping

Study days
Semi-finals

Semi-finals

Semi-finals
No class (Thanksgiving)
No class (Thanksgiving)

Existential Types
Propasitions 25 Types
Dependent Types

Concurrency
Probabilistic Semantics
After 4110

OSLs and Bidirectional Programming
fctory Lap
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Semester in Review

C54110 Home Project Resources Schedule Syllabus CMS  Campuswire

Schedule

Date

October 14

Topic Notes

_Mathematicaf Preliminaries
Operational Semantics

Denotational Semantics

Axiomatic Semantics

A-Calculus

Mid semester break

October 16

October 19
October 21
October 23

October 26
October 28
October 30

Naovember 2
Naovember 4
Naovember &

Naovember 9
November 11
November 13

November 16
November 18
November 20

November 23
Navember 25
November 27

Naovember 30
December 2
Oecember 4

December 7
December S
Oecember 11

ODecember 14
December 16

Encodings and Fixed Point Combinators

Definitional Translation
Contnuations

Types

More Types
Proving Type Soundness
More Proving Type Soundness

Normalzation
Advanced Types
Polymorphesm

Type Inference
Recursive Types
Records and Subtyping

Study days
Semi-finals

Semi-finals

Semi-finals
No class (Thanksgiving)
No class (Thanksgiving)

Existential Types
Propasitions 25 Types
Dependent Types

Concurrency
Probabilistic Semantics
Ater 4110

OSLs and Bidirectional Programming
fctory Lap
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Semester in Review

A-Calculus Programming

C54110 Home Project Resources Schedule Syllabus CMS  Campuswire

October 23

schedule Types slides notes video
October 26 More Types same shdes same notes video HWS due
) October 28 Proving Type Soundness slides notes video
Date Topic Notes October 30 More Proving Type Soundness same shdes same notes video
| . . . . November2  Normabzation slides notes video HWE due
M ath ema t ICa ' Pre { fminaries Novemberd  Advanced Types slides notes video
, November&  Polymorphesm slides notes video
November 9 Type Inference slides notes vides Take-Home Prebm 2

November 11

Recursive Types

shides notes vices

.
(S B |5 I | &

O p e ra t i O n al Se ma n t i CS November13  Records and Subtyping slides notes vide Project Alpha due
November 16 Study days
November 18 Semi-finals
November20  Semi-finals
D . l S . November23  Semi-finals
enotational Semantics L
November 27 No class (Thanksgiving)
: - : November 30  Existential Types slides notes videc
AX'O m at|C Semantlcs Oecember 2 Prop-osit»ons’as Types :Ipd:: r,:t-:s -:nc-:;
December 4 Dependent Types notes video code Project Beta due
December?  Concurrency slides video Homework 7 due
December 9 Probabilistic Semantics
>\_Ca|CUIUS December 11 After 4110 slides
¥ December 14 DSLs and Bidirectional Programming slides video Homework 8 due
October 14 Mid semester break December 16 Victory Lap Final Project due



C54110 Home

Schedule

Date

October 14

Topic

Semester in Review

Project Resources Schedule Syllabus CMS Campuswire

Notes

“‘Mathematical Preliminaries

Operational Semantics

Denotational Semantics

Axiomatic Semantics

Mid semester break

A-Calculus

Naovember 4
Naovember &

Naovember 9
November 11
November 13

November 16
November 18
Naovember 20

Naovember 23
Navember 25
November 27

Naovember 30
December 2
Oecember 4

December 7
December S
Oecember 11

Oecember 14
December 16

A-Calculus Programming

Advanced Types
Polymorphesm

Type Inference
Recursive Types
Records and Subtyping

Study days
Semi-finals

Semi-finals

Semi-finals
No class (Thanksgiving)
No class (Thanksgiving)

Existential Types
Propasitions s Types
Dependent Types

Concurrency
Probabilistic Semantics
Ater 4110

OSLs and Bidirectional Programming
Victory Lap
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Semester in Review

A-Laicuils Eibgramming

Schedule L
Date Topic Notes ' . Slmple Types

Mathematical Preliminaries
Advanced Types

Operational Semantics

November 16 Study days
November 18 Semi-finals
November 20  Semi-finals

Denotational Semantics November23  Semi-finals

November25  No class (Thanksgiving)
November 27 No class (Thanksgiving)

A : t' S t’ November 30  Existential Types slides notes vide
XlOl I Ia |C eman |CS Oecember 2 Propasitions as Types slides notes video
December 4 Dependent Types notes video code Project Beta due
Oecember 7 Concurrency slides video Homework 7 due
}\ C | | December9  Probabilistic Semantics
a CU US December 11 After 4110 slides
December 14 DSLs and Bidirectional Programming slides video Homework 8 due

October 14 Mid semester break Oecember 16 'il-(tOfy Lap Final Pijca due



Semester in Review

ALaiculiis Fbgramming

Schedule

Date Topic Notes

Simple Types

Mathematical Preliminaries
Advanced Types

Operational Semantics

November 16 Study days
November 18 Semi-finals
November 20  Semi-finals

Denotational Semantics November23  Semi-finals

November 25  No class (Thanksgiving)
November 27 No class (Thanksgiving)

Axiomatic Semantics Logic and Proof

) December 8 Probo::ulnst»;: Semantics
}\_CaICU|US December 1l After 4110 slides

December 14 DSLs and Bidirectional Programming slides video Homework 8 due

October 14 Mid semester break December 16 VWictory Lap #nal Project due
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ALaiculiis Fbgramming

Schedule L
Date Topic Notes ' , Slmple Types

Mathematical Preliminaries
Advanced Types
Operational Semantics

November 16 Study days
November 18 Semi-finals
November 20  Semi-finals

Denotational Semantics November21  Semi-fnals

November 25  No class (Thanksgiving)
November 27 No class (Thanksgiving)

Axiomatic Semantics Logic and Proof

A-Calculus Advanced Topics

October 14 Mid semester break Oecember 16 VWictory Lap #nal Project due
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ALaiculiis Fbgramming

Schedule B Q
Date Topic Notes V , Slmple Types
Mathematical Preliminaries '
Advanced Types
Operational Semantics e —
| | it
Denotational Semantics e
November 27 No class (Thanksgiving)
Axiomatic Semantics Logic and Proof
A-Calculus Advanced Topics
October 14 Mid semester break Oecember 16 Wictory Lap

Proofs

#nal Project due
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ALaiculiis Fbgramming

Schedule |
Date Topic Notes \ Slmple Types
Mathematical Preliminaries
Advanced Types
Operational Semantics e ——
| | it
Denotational Semantics e
November 27 No class (Thanksgiving)
Axiomatic Semantics Logic and Proof
A-Calculus Advanced Topics
October 14 Mid semester break Oecember 16 Victory Lap Fnal Project due

Proofs Interpreters



C54110 Home Project Resources Schedule Syllabus CMS  Campuswire

Semester in Review

Schedule
Date Topic Notes
Mathematical Preliminaries
Operational Semantics e ——
| | it
Denotational Semantics ) e
November 27 No class (Thanksgiving)
Axiomatic Semantics
N-Calculus
October 14 Mid semester break Oecember 16 Victory Lap

Proofs Interpreters

A-Calculus Programming

Simple Types

Advanced Types

Logic and Proof

Advanced Topics

Verifiers

#nal Project due




Trend: Verified Software

- Researchers are increasingly developing

operational models of real-world languages

- Example: CompCert

- Full compiler verified in Coq

- Progress in verification makes it possible to
ouild end-to-end verified systems

- Formal semantics for (a large subset of C)
- Formal semantics for PPC (and

ater x86)

Branch tunneling LCM CSE

Parsing, elaboration ‘ . | Simplifications . Stack pre-allocation
................ o Cllght C#minor
(not verified) type elimination

CFG

Instruction
selection

CminorSel

Code Register
. [ LTL . RTL
linearization allocation

Spilling, reloading
calling conventions

Instr. scheduling

. Layout of ( | PowerPC code
Linear ) Mach PPC
stack frames generation

Constant propagation

construction

Assembling, linking

(not verified)

DOI:10.1145/1538788.1538814

Formal Verification
of a Realistic Compiler

By Xavier Leroy

Abstract

This paper reports on the development and formal veri-
fication (proof of semantic preservation) of CompCert, a
compiler from Clight (a large subset of the C programming
language) to PowerPC assembly code, using the Coq proof
assistant both for programming the compiler and for prov-
ing its correctness. Such a verified compiler is useful in the
context of critical software and its formal verification: the
verification of the compiler guarantees that the safety prop-
erties proved on the source code hold for the executable
compiled code as well.

1. INTRODUCTION

Can you trust your compiler? Compilers are generally
assumed to be semantically transparent: the compiled
code should behave as prescribed by the semantics of the
source program. Yet, compilers—and especially optimizing
compilers—are complex programs that perform compli-
cated symbolic transformations. Despite intensive testing,
bugs in compilers do occur, causing the compilers to crash
at compile-time or—much worse—to silently generate an
incorrect executable for a correct source program.

For low-assurance software, validated only by testing,
the impact of compiler bugs is low: what is tested is the
executable code produced by the compiler; rigorous testing
should expose compiler-introduced errors along with errors
already present in the source program. Note, however, that
compiler-introduced bugs are notoriously difficult to expose
and track down. The picture changes dramatically for safety-
critical, high-assurance software. Here, validation by test-
ing reaches its limits and needs to be complemented or

1 1 1 1 [~ r 1 .1 1 1 1 1

preserves the semantics of the source programs. For the last
5 years, we have been working on the development of a real-
istic, verified compiler called CompCert. By verified, we mean
a compiler that is accompanied by a machine-checked proof
of a semantic preservation property: the generated machine
code behaves as prescribed by the semantics of the source
program. By realistic, we mean a compiler that could realisti-
callybe used in the context of production of critical software.
Namely, it compiles a language commonly used for critical
embedded software: neither Java nor ML nor assembly code,
but a large subset of the C language. It produces code for a
processor commonly used in embedded systems: we chose
the PowerPC because it is popular in avionics. Finally, the
compiler must generate code that is efficient enough and
compact enough to fit the requirements of critical embed-
ded systems. This implies a multipass compiler that features
good register allocation and some basic optimizations.
Proving the correctness of a compiler is by no ways a
new idea: the first such proof was published in 1967'¢ (for
the compilation of arithmetic expressions down to stack
machine code) and mechanically verified in 1972."” Since
then, many other proofs have been conducted, ranging from
single-pass compilers for toy languages to sophisticated
code optimizations.? In the CompCert experiment, we carry
this line of work all the way to end-to-end verification of a
complete compilation chain from a structured imperative
language down to assembly code through eight intermediate
languages. While conducting the verification of CompCert,
we found that many of the nonoptimizing translations per-
formed, while often considered obvious in the compiler lit-
erature, are surprisingly tricky to formally prove correct.
This paper gives a high-level overview of the CompCert

h | ral L, . 1 1 41




Petr4: Formal Foundations for P4 Data Planes

RYAN DOENGES, Cornell University, USA

MINA TAHMASBI ARASHLOO, Cornell University, USA
ALEXANDER CHANG, Cornell University, USA
NEWTON NI, Cornell University, USA

SAMWISE PARKINSON, Cornell University, USA P ET R4
RUDY PETERSON, Cornell University, USA

ALAIA SOLKO-BRESLIN, Cornell University, USA

AMANDA XU, Cornell University, USA
NATE FOSTER, Cornell University, USA

P4 is a domain-specific language for specitying the behavior of packet-processing systems. It is based on
an elegant design with high-level abstractions, such as parsers and match-action pipelines, which can be
compiled to efficient implementations in hardware or software. Unfortunately, like many industrial languages,
P4 lacks a formal foundation. The P4 specification is a 160-page document with a mixture of informal prose,
graphical diagrams, and pseudocode. The reference compiler is complex, running to over 40KLoC of C++ code.
Clearly neither of these artifacts is suitable for formal reasoning.

This paper presents a new framework, called PETr4, that puts P4 on a solid foundation. PETR4 uses
standard elements of the semantics engineering toolkit, namely type systems and operational semantics,
to build a compositional semantics that assigns an unambiguous meaning to every P4 program. PETR4 is
implemented as an OCaml prototype that has been validated against a suite of over 750 tests from the reference
implementation. While developing PETR4, we discovered dozens of bugs in the language specification and the
reference implementation, many of which have been fixed. Furthermore, we have used PETR4 to establish the
soundness of P4’s type system, prove key properties such as termination, and formalize a language extension.




The Petr4 Team

Mina Tahmasbi Arashloo Santiago Bautista Alexander Chang Newton Ni

Rudy Peterson Alaia Solko-Breslin Amanda Xu Nate Foster
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Data plane: forward packets, balances load,
implements monitoring, etc.



Control Plane: discovers topology,
computes routes, enforces policies, etc.
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Network Devices: implement packet processing,
buffering, queueing, etc. at line rate



Network Programming Challenges

S Networks are distributed systems with
& &P thousands of interacting nodes

Networks enforce complex securit
TR o lexsecurty
policies that span trust boundaries

Networks are expected to offer gooo
performance with limited resources




Brief History of Network Verification

On Static Reachability Analysis of IP Networks

Geoffrey G. Xie' Jibin Zhan'
Albert Greenberg?

ABSTRACT

The primary purpose of a network is to provide reach-
ability between applications running on end hosts. In
this paper, we describe how to compute the reachability
a network provides from a snapshot of the configuration
state from each of the routers. Our primary contribution
is the precise ition of the potential hability of a
network and a substantial simplification of the problem
through a unified modeling of packet filters and routing
protocols. In the end, we reduce a complex, important
practical problem to computing the transitive closure to

set union and i p on hability set
representations. We then extend our algorithm to model
the infl of packet ions (e.g., by NATs or

ToS remapping) along the path. Our technique for static

Gisli Hjalmtysson*

David A. Maltz' Hui Zhang'
Jennifer Rexford

Determining what kinds of packets can be exchanged
between two hosts connected to a network is a difficult
and critical problem facing network designers and opera-
tors. To our knowledge, the problem is largely unexam-
ined in the networking research literature. Solving the
problem requires knowing far more than the network’s
topology or the routing protocols it uses. For example,
despite having a route to a remote end-point, a sender’s
packets may be discarded by a packet filter on one of the
links in the path. The network’s packet filters, routing
policies, and packet transformations all must be taken into
account to even ask the simple and very important ques-
tion of “can these two hosts communicate?”

This paper crystallizes the problem of calculating the

analysis of network reachability is valuable for verifying
the intent of the network designer, troubleshooting reacha-
bility problems, and performing “what-if”” analysis of fail-
ure scenarios.

Index Terms— Routing, Static Configuration Analysis.

I. INTRODUCTION

While the ultimate goal of networking is to enable com-
munication between hosts that are not directly connected,
a wide variety of mechanisms are being used to limit the
set of destinations the hosts can reach. For example, back-
bone networks may provide Virtual Private Network ser-
vices to connect only remote offices belonging to the same
enterprise, and enterprise networks themselves are often
segmented into departments or offices whose hosts must
be isolated for business or security reasons. Also, due to
a configuration or design mistake, two hosts may not be
able to communicate under certain failure scenarios, even
though the network remains connected; knowing when
these vulnerabilities exist is crucial to building a more re-
liable network.

Research sponsored by the NSF under ANI-0085920, ANI-0331653,
and ANI-0114014. Views and conclusions contained in this document
are those of the authors.

* Naval Postgraduate School. xie@nps.edu. This work was done while
G. G. Xie was a visiting scientist at Carnegie Mellon University.
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hability provided by a network. By mapping packet
filters, routing information, and packet transformations to
a single unified model of reachability we have determined
how to form this ingly i ble problem into
a classical graph problem that can be solved with polyno-
mial time algorithms such as transitive closure. This is the
primary contribution of this paper.

A. Advantages of Autamated Satic Analysis

Currently, the common practice to determine if pack-
ets can reach from one point in a network to another is to
use tools such as ping and traceroute to send probe
traffic that experi Ily test whether hability exists.
In contrast, we have developed a Static-analysis approach
that can be applied even if only a description of the net-
work is available. Static analysis has many advantages
over ping and traceroute, including:

+ The ability to determine a description of the set of
packets that could traverse the network from a given
starting point to a given ending point, whereas exper-
imental techniques can only check the reachability of
the specific probe traffic they send.

The ability to calculate the set of routers and hosts
that a given packet could potentially reach, whereas
ping and traceroute can only check reachabil-
ity along the path currently selected by the routing
protocols.

The ability to evaluate the reachability of a net-
work during its désign phase—before the network

.
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Abstract

Today's networks typically carry or deploy dozens
of protocols and mechanisms simultancously such as
MPLS, NAT, ACLs and route redistribution. Even when
individual protocols function correctly, failures can arise
from the complex interactions of their aggregate, requir-
ing network administrators to be masters of detail. Our
goal is to automatically find an important class of fail-
ures, regardless of the protocols running, for both opera-
tional and experimental networks.

To this end we developed a general and protocol-
agnostic framework, called Header Space Analysis
(HSA). Our formalism allows us to statically check net-
work specifications and configurations to identify an im-
portant class of failures such as Reachability Failures,
Forwarding Loops and Traffic Isolation and Leakage
problems. In HSA, protocol header fields are not first
class entities; instead we look at the entire packet header
as a concatenation of bits without any associated mean-
. Each packet is a point in the {0, 1}* space where L
is the maximum length of a packet header, and network-
ing boxes transform packets from one point in the space
to another point or set of points (multicast).

We created a library of tools, called Hassel, to imple-
ment our framework, and used it to analyze a variety of
networks and protocols. Hassel was used to analyze the
Stanford University backbone network, and found all the
forwarding loops in less than 10 minutes, and verified
reachability constraints between two subnets in 13 sec-
onds. It also found a large and complex loop in an exper-
imental loose source routing protocol in 4 minutes.

1 Introduction

“Accidents will occur in the best-regulated
families” — Charles Dickens

In the beginning, a switch or router was breathtak-
ingly simple. About all the device needed to do was in-
dex into a forwarding table using a destination address,
and decide where to send the packet next. Over time,

forwarding grew more compl d. Middlebx (e.g..

NAT and firewalls) and encapsulation mechanisms (e.g.,
VLAN and MPLS) appeared to escape from IP’s lim-
ilations: e.g.. NAT bypasses address limits and MPLS

UCSD and Yahoo! Research Stanford University

ford.edu varghese@

nickm@stanford.edu

allows flexible routing. Further, new protocols for spe-
cific domains, such as data centers, WANs and wireless,
have greatly increased the complexity of packet forward-
ing. Today, there are over 6,000 Internet RFCs and it is
not unusual for a switch or router to handle ten or more
encapsulation formats simultancously.

This complexity makes it daunting to operate a large
network today. Network operators require great sophisti-
cation to master the complexity of many interacting pro-
tocols and middleboxes. The future is not any more rosy
- complexity today makes operators wary of trying new
protocols, even if they are available, for fear of break-
ing their network. Complexity also makes networks frag-
ile, and susceptible to problems where hosts become iso-
lated and unable to communicate. Debugging reacha-

ility problems is very time consuming. Even simple
questions are hard to answer, such as “Can Host A talk
to Host B?” or “Can packets loop in my network?” or
r A listen to communications between Users
B and C?”. These questions are especially hard to an-
swer in networks carrying multiple encapsulations and
containing boxes that filter packets.

Thus, our first goal is to help system administrators
statically analyze production networks today. We de-
scribe new methods and tools to provide formal answers.
to these questions, and many other failure conditions, re-
gardless of the protocols running in the network.

Our second goal is to make it easier for system ad-
ministrators to guarantee isolation between sets of hosts,
users or traffic. Partitioning networks this way is usually
called “slicing™; VLANs are a simple example used to-
If configured correctly, we can be confident that traf-
fic in one slice (e.g. a VLAN) cannot leak into another.
This is useful for security, and to help answer questions
such as “Can I prevent Host A from talking to Host B?”.
For example, imagine two health-care providers using
the same physical network. HIPAA [20] rules require
that no information about a patient can be read by other
providers. Thus a natural application of slicing is to place
each provider in a separate slice and guarantee that no
packet from one slice can be controlled by or read by the
other slice. We call this secure slicing. Secure slicing
may also be useful for banks as part of defense-in-depth,
and for classified and unclassified users sharing the same
physical network. Our tools can verify that slices have

etwork-Wide Invariants in Real Time

enxuan Zhou, Matthew Caesar, P. Brighten Godfrey
Hllinois at Urbana-Champaign
2, wzhoul0, caesar, pbg}@illinois.edu

complexity of software will increase. Moreover, SDN al-
lows multiple applications or even multiple users to pro-
gram the same physical network simultaneously, poten-
tially resulting in conflicting rules that alter the intended
to hours,  behavior of one or more applications [25].
One solution is to rigorously check network software
is inreal  or configuration for bugs prior to deployment. Symbolic
challenge  execution [12] can catch bugs through exploration of all
ring the  possible code paths, but is usually not tractable for large

ected. In - software. Analysis of configuration files [13,28] is use-
achieves  ful, but cannot find bugs in router software, and must be
software-  designed for spec iguration languages and control

ices that  protocols. Moreover, using these approaches, an opera-
dynami-  tor who wants to ensure the network’s correctness must
dified or  have access to the software and configuration, which may
le header  be inconvenient in an SDN network where controllers
ts. Based  can be operated by other parties [25]. Another approach
the NOX s 10 statically analyze snapshots of the network-wide
ppenFlow plane state [9,10,17,19,27). However, these pre-
hat Veri-  vious approaches operate offline, and thus only find bugs
ndreds of  after they happen.

‘This paper studies the question, /s i possible to check
network-wide correctness in real time as the network
evolves? If we can check each change to forwarding be-
havior before it takes effect, we can raise alarms imme-

plex pro-  diately, and even prevent bugs by blocking changes that
on hun-  Violate important invariants. For example, we could pro-
switches,  hibit changes that violate access control policies or cause
It asub. forwarding loops.
etworks However, existing techniques for checking networks
er, faults  are inadequate for this purpose as they operate on
dtice, in-  timescales of seconds to hours [10,17,19]. ' Delay-
s and ac- ing updates for processing can harm consistency of net-

ble or  Work state, and increase reaction time of protocols with
-Defined real-time requirements such as routing and fast failover;
pment of ~ and processing a continuous stream of updates in a large

ized net-

The average run time of reachability tests in [17) is 13 seconds.
the data 4 it takes a few hundred seconds to perform reachability checks in
since the Anteater [19].

posium on Networked Systems Design and Implementation (NSDI‘13) 15
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A General Approach to Network Configuration Analysis

Ari Fogel Stanley Fung  Luis Pedrosa Meg Walraed-Sullivan

Ramesh Govindan ~ Ratul Mahajan ~ Todd Millstein
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Abstract— We present an approach to detect network
configuration errors, which combines the benefits of two
prior approaches. Like prior techniques that analyze con-
figuration files, our approach can find errors proactively.
before the configuration is applied, and answer “what if”
questions. Like prior iques that analyze data-pla

However, configurations of real networks are complex.
with many interacting aspects (e.g.. BGP, OSPF, ACLs,
VLANS, static routing, route redistribution); existing
configuration analysis tools handle this complexity by
developing customized models for specific aspects of the

snapshots, our approach can check a broad range of for-
warding properties and produce actual packets that vio-
late checked properties. We accomplish this

o or specific properties. For in-
stance, ree 7] produces a normalized representation of
configuration that lets it check a range of properties that
corre: to common errors (¢.g.. “route validity” of

by faithfully deriving and then analyzing the data plane
that would emerge from the configuration. Our deriva-
tion of the data plane is fully declarative, employing a set
of logical relations that represent the control plane, the
data plane, and their relationship. Operators can query
these relations to understand identified errors and their
provenance. We use our approach to analyze two large
university networks with qualitatively different routing
designs and find many misconfigurations in each. Oper-
ators have confirmed the majority of these as errors and
have fixed their configurations accordingly.

1 Introduction

Configuring networks is arduous because policy require-
ments (for resource management, access control, etc.)
can be complex and configuration languages are low-
level. Consequently, configuration errors that compro-
mise availability, sccurity, and performance are com-
mon [7, 21, 36]. In a recent incident, for example, a mis-
configuration led to a nation-wide outage that impacted
all customers of Time Warner for over an hour [3].

Prior app! esearchers have developed two
‘main approaches to detect network configuration errors.
The first approach directly analyzes network configura-
tion files 28, 34]. Such a sratic analysis
can flag errors proactively, before a new configuration is
applied to the network, and it can naturally answer “what
if” questions with respect to different environments (i.c..
failures and route announcement from neighbors).

BGP, whether OSPF adjacencies are configured on both
ends, and that there are no duplicate router identifiers).
Similarly, FIREMAN [34] produces a “rule graph” struc-
ture to represent each ACL and analyzes these graphs.
This selective focus makes configuration analysis practi-
cal, but it also limits the scope of what can be checked.
Further, because many aspects of the configuration are
not analyzed, it can be difficult for operators to assess
how and whether identified errors ultimately impact for-
warding.

Researchers have recently proposed a second approach
that can be used to detect configuration errors: analyzing
the data plane snapshots (i.c.. forwarding behavior) of
the network [13, 14, 22, 37]. Unlike with static analysis,
any configuration error that causes undesirable forward-
ing can be precisely detected, because the data plane re-
flects the combined impact of all configuration aspects,
Further, because the data plane has well-understood se-
‘mantics and can be efficiently encoded in various logics,
a wide range of forwarding properties can be concisely
expressed and scalably checked with off-the-shelf con-
straint solvers.

Unfortunately, analysis of data plane snapshots cannot
prevent errors proactively, before undesirable forwarding
occurs. Further, once a problem is flagged, the operators
still need to localize the responsible snippets of configu-
ration. This task is challenging because the relationship
between configuration snippets and forwarding beha
is complex. The responsible snippet is not necessarily
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Scalable Verification of Probabilistic Networks*
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Abstract to develop automated techniques for modeling and analyz-

This paper presents McNetKAT, a scalable tool for verifying
probabilistic network programs. McNetKAT is based on a
new semantics for the guarded and history-free fragment

ing network behavior [51], but only over the last decade
has programming language methodology been brought to
bear on the problem [6, 7, 36], opening up new avenues
for about networks in a rigorous and principled

of Probabilistic NetKAT in terms of fi 3

Markov chains. This view allows the semantics of all pro-
grams to be computed exactly, enabling construction of an

verifi tool. D specifi

and a parallelizing backend enable McNetKAT to analyze
networks with thousands of nodes, automatically reasoning
about general properties such as probabilistic program equiv-
alence and refinement, as well as networking properties such
as resilience to failures. We evaluate McNetKAT's scalabil-
ity using real-world topologies, compare its performance
against state-of-the-art tools, and develop an extended case
study on a recently proposed data center network design.

CCSConcepts +Theory of computation — Automated

reasoning; Program semantics; Random walks and Markov

chains; « Networks — Network properties; « Software and
its engineering — Domain specific languages.

way [4, 14, 2! . 33]. Building on these initial advances,
researchers have begun to target more sophisticated net-
works that exhibit richer phenomena. In particular, there is
renewed interest in randomization as a tool for designing
protocols and modeling behaviors that arise in large-scale
systems—from uncertainty about the inputs, to expected
load, to likelihood of device and link failures.

Although programming languages for describing random-
ized networks exist [13, 17], support for automated reasoning
remains limited. Even basic properties require quantitative

in the p setting, and gly sim-
ple programs can generate complex distributions. Whereas
state-of-the-art tools can easily handle deterministic net-
works with hundreds of thousands of nodes, probabilistic
tools are currently orders of magnitude behind.

This paper presents McNetKAT, a new tool for reason-

Keywords Network verifi P icF
ACM Reference Format:

Steffen Smolka, Praveen Kumar, David M. Kahn, Nate Foster, Justin
Hsu, Dexter Kozen, and Alexandra Silva. 2019.
of Probabilistic Networks. In Proceedings of the 40th ACM $

ing about babil network programs written in the
guarded and history-free fragment of Probabilistic NetKAT
(ProbNetKAT) [4, 13, 14, 46]. ProbNetKAT is an expressive
programming language based on Kleene Algebra with Tests,
capable of modeling a variety of probabilistic behaviors and

Conference on Programming Language Design and Imp
(PLDI '19), June 22-26, 2019, Phoenix, AZ, USA. ACM, New York, NY,
USA, 23 pages. https://doi.org/10.1145/3314221.3314639

1 Introduction

Networks are among the most complex and critical com-
puting systems used today. Researchers have long sought

Extended version with appendix.
*Work performed at Comell University
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prop: including routing [30, 48], uncer-
tainty about demands [40), and failures [19). The history-free
fragment restricts the language semantics to input-output be-
havior rather than tracking paths, and the guarded fragment
provides conditionals and while loops rather than union and
iteration operators. Although the fragment we consider is a
restriction of the full language, it is still expressive enough
to encode a wide range of practical networking model
isting deterministic tools, such as Anteater [35], HSA [25],
and Veriflow [27], also use guarded and history-free models.

To enable automated reasoning, we first reformulate the
semantics of ProbNetKAT in terms of finite state Markov
chains. We introduce a big-step semantics that models pro-
grams as Markov chains that transition from input to out-
put in a single step, using an auxiliary small-step semantics
to compute the closed-form solution for the semantics of
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Status Quo

Network Working Group S. Bradner
Request for Comments: 2418 Editor
Obsoletes: 1603 Harvard University
BCP: 25 September 1998

Category: Best Current Practice

IETF Working Group
Guidelines and Procedures

"We believe in rough consensus and running code”

Copyright (C) The Internet Society (1998). All Rights Reserved.

Abstract

The Internet Engineering Task Force (IETF) has responsibility for
developing and reviewing specifications intended as Internet
Standards. IETF activities are organized into working groups (WGs).
This document describes the guidelines and procedures for formation
and operation of IETF working groups. It also describes the formal
relationship between IETF participants WG and the Internet
Engineering Steering Group (IESG) and the basic duties of IETF
participants, including WG Chairs, WG participants, and IETF Area
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Shaky Foundations

"The system doesn't have a semantics;
N a very deep sense the program does
not have a meaning; what it hasis... it's
just whatever happens. That's kind of
the way nature works too, right?”
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Language-Based Approach




Anatomy of a P4 Program

// Programmer-defined types
header hop {
bit<7> port;
bit<1l> bos;
}
struct headers {
hop[9] hops;
}
// Programmer-defined components
parser MyParse(packet in pkt,
out headers hdrs,
inout std meta meta) {
state start {
pkt.extract(hdrs.hops.next);
transition select(hdrs.hops.last.bos) {
1: accept;
default: start;
}
}
}

control MyPipe(inout headers hdrs,
inout std meta meta) {

action allow() { }

action deny() { meta.egress port = OxFF; }

table acl {
key = { meta.ingress port : exact;

meta.egress _port : exact; }

actions = { allow; deny; }
default _action = deny();

}

apply {
meta.egress port =

(bit<8>)hdrs.hops[@].port;

if('hdrs.hops[@].1isValid()) exit;
hdrs.hops.pop front(1);
acl.apply();

}

}
control MyDeparse(packet out pkt,

in headers hdrs) {
apply { pkt.emit(hdrs.hops); }

}
Switch(MyParse(),MyPipe(),MyDeparse()) main;

Parser Types

Controls



Formalization Challenges

The “official” definition of P4 resides in an informal
specification and a 40KLoC C++ implementation

P44 Language Specification
version 1.2.1

The P4 Language Consortium
2020-06-11

Abstract. P4 is a language for programming the data plane of network devices. This document provides a
precise definition of the P44 language, which is the 2016 revision of the P4 language (http://p4.org).

The target audience for this document includes developers who want to write compilers, simulators,
IDEs, and debuggers for P4 programs. This document may also be of interest to P4 programmers who are
interested in understanding the syntax and semantics of the language at a deeper level.

Contents

1. Scope
2. Terms, definitions, and symbols
3. Overview
3.1. Benefits of P4
3.2. P4 language evolution: comparison to previous versions (P4 v1.0/v1.1)
4. Architecture Model
4.1. Standard architectures
4.2. Data plane interfaces
4.3. Extern objects and functions

5. Example: A very simple switch
< l "nn: Q;mnln QIII;*I“"\ A"I\l‘\;fnl\"ll"ﬂ




Formalization Challenges

The “official” definition of P4 resides in an informal
specification and a 40KLoC C++ implementation

P4,¢ Language Specification

( ’ Search or jump to... : Pull requests Issues Marketplace Explore
H pdlang/pdc ® Unwatch ~ 74 vy Star 275 % Fork 216
Abstract. P4 is a language for pro 0 y - _ _ : I _
precise definition of the P4l6 lang <> Code Issues .1 Pull requests ») Actions Projects L Wiki Security
The target audience for this doc
IDEs, and debuggers for P4 progr:
interested in understanding the sy1 ¥ master ~ $ 68 branches © 0 tags Go to file Add file ~ About 3
P4_16 reference compiler
‘ mbudiu-vmw Reassociation pass; two mor... = +/ <898794 22 hours ago %) 2,133 commits
Contents [IJ Readme
.github/workflows Add Bazel build files for p4c (#2430) 3 months ago 58 Apache-2.0 License
1. Scope
2' Terms, deﬁmtlons, and symb backends Fix EBPF parenthesis issue (#2570) 4 days ago
3. Overview bazel Update p4_library Bazel rule to allow workspace-r... 29 days ago Releases
3.1. Benefits of P4
cmake use /usr/bin/env bash instead of /bin/bash (#2285) 6 months ago No releases published

3.2. P4 language evolution: c(
4. Architecture Model control-plane Improve error handing and error messages (#2531) 29 days ago
4.1. Standard architectures

Create a new release

. docs Remove format prefix from ::error; fixes #2197 (#... 8 months ago
4.2. Data plane interfaces Packages
4.3. Extern ObjCCtS and functi frontends Reassociation pass; two more strength-reduction... 22 hours ago
5 E l A . l .t No packages published
- EXamplie: A very sumpie swit ir Fix bugs related to StructureExpressions (#2552) 3 days ago Publish your first package
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Challenge: Undefined Values

8.22. Reading uninitialized values and writing fields of invalid headers

As mentioned in Section 8.17, any reference to an element of a header stack hs[index] where
index 1s a compile-time constant expression must give an error at compile time 1if the value of the
index 1s out of range. That section also defines the run time behavior of the expressions hs.next
and hs.last, and the behaviors specified there take precedence over anything in this section for
those expressions.

All mentions of header stack elements in this section only apply for expressions hs[index]
where index 1s a run time variable expression, 1.e. not a compile-time constant value. A P4
implementation 1s allowed not to support hs[index] where index i1s a run time variable
expression, but if it does support these expressions, the implementation should conform to the
behaviors specified in this section.

The result of reading a value in any of the situations below 1s that some unspecified value will be
used for that field.

* reading a field from a header that is currently invalid.

* reading a field from a header that i1s currently valid, but the field has not been initialized
since the header was last made valid.

* reading any other value that has not been 1nitialized, e.g. a field from a struct, any
uninitialized variable inside of an action Or control, or an out parameter of a control or
action you have called, which was not assigned a value during the execution of that
control or action (this list of examples is not intended to be exhaustive).

» reading a field of a header that 1s an element of a header stack, where the index 1s out of
range for the header stack.




p4c: Unsound Optimization

fruffy commented on Apr 17 « edited ~ Contributor () «--

Hello.
| have another clarification question on setlInvalid , this is a follow-up to #2212.
This issue is quite esoteric but has given me some trouble recently.

control ingress(inout Headers h, inout Meta m, inout standard metadata t sm) {

apply {
h.h.setInvalid();
h.h.a = 1;

h.eth hdr.src _addr = h.h.a;

if (h.eth hdr.src _addr != 1) {
h.h.setValid();
h.h.a = 1;

which is eventually turned into

control ingress(inout Headers h, inout Meta m, inout standard metadata t sm) {
apply {
h.h.setInvalid();
h.h.a = 48wl;
h.eth hdr.src _addr = 48wl;
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p

Ty

pes

bool

Int
bit(exp)
error {]_C}

match_kind {]_”}

enum X {]_C}
{f + 7}
header {f : 7}

T|n]
X

p
table

Petr4 Syntax

booleans
integers
bitstrings
errors
match kinds
enums
records

headers
stacks
type variables

data types
tables

function(X)(d x : p) — py: functions

ctor(x : 7) = Ty

N
out
inout

constructors

copy-in
copy-out
copy-in-out

Expressions
exp == b

Statements

stmt

2V

X

exp, | exp, |

exp, [ exp,:exp,]
© exp

exp, © exp,
(7) exp

Uf = exp}
exp.f

X.f

exp(p) (exp)

booleans
integers
variables
array accesses
bitstring slices
unary ops
binary ops
casts

records

fields
type members
function call

exp(p)(exp) method call

exp ‘= exp assignment

if (exp) stmt else stmt conditional

{stmt} sequencing

exit exit

return exp return

var_decl variable declaration



Petr4 Semantics

Type System

>, T, A+ exp: function(X)(d x : 7) — Ty
SA[X=p| FT~ T’ >, I,AFexp:1 goesd >, A[X = p] F Tyt » T,

ret

— T-CALL
>, T, A+ exp{p)(exp) : 7/, goes in
Operational Semantics
(C, A, o0,€,exp) || (o1,clos(eq, X,d x : 7, 7, decl stmt))
(ALX = P]> 0,6,7) |; T
(C, A, 01,6,d x : T/ = exp) Jcopy (02, x = £, lval := £)
(C,A|X = p], 09, €c[x > €], decl) || {A,, 03, €2, continue)
(C, Ny, 03, €9, stmt) || (o4, €3, return val) (C, A, 04, €, lval := 04(£)) Urrite 05 o
-CALL

(C, A, 0,¢ exp{p)(exp)) | (o5, val)



Petr4 Metatheory

Definition 3.1. A statement configuration (C, A, o, €, stmt) is said to be safe under =, 3, ', A with
typing outputs X', T, written =, 2, T, A + (C, A, 0,€,stmt) 4 X/, T, it (1) Z,A + o, (ii) ZE,A F € : T,
and (iii) 2, T, A + stmt 4 X/, T".

THEOREM 3.2. Let (C, A, o, €, stmt) be an initial configuration and take contexts =, >, T, A. Suppose
the configuration is safe under the contexts with typing outputs " andI'" and 2 + (o, €). There exists
a final configuration (o', €', sig) and a store typing =’ 2 = such that (C, A, o, €, stmt) || (o', €, sig)
and =", 3", T", A+ (d’, €, sig).

Proof is mostly standard, but needs a
logical relations argument for termination...



Future Work

-Poulet4: Coqg port (with Princeton gang)
Verified compiler transformations
-Inlining functions / controls
-Parser unrolling / vectorization
-Code motion
-Code generation for new targets
-eBPF
-FPGAs

-Bluespec/Kami/ChiselFlow
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. (Regrades)



After 4110

Cornell Courses

. CS 4120 (Compilers)
-CS5114 /6114 (Network PL)

- CS 6110 (Advanced PL)

. CS 6120 (Advanced Compilers)
» CS 61xx (Special Topics)
Research

. 54999

. Summer

. Open Source (e.qg., GSOC)



Doing a PhD...

Applications

- [ranscript

- Recommendation Letters

- Statements

- (GRE)

Masters Degree?

- Optional not required (in North America)

Conferences
- SIGPLAN “Big 4": POPL, PLDI, ICFP, OOPSLA
. Programming Languages Mentoring Workshop (PLMW)



Industry

Compilers

» GPUS

- [PUs

- LLVM

- WebAssembly
» RUSt

Verification
- Startups (Bedrock Systems, Correct Computation, etc.)
- Amazon Automated Reasoning Group

. Google Project Oak




|\ Thank you!

-CS 4110 is one of my favorite classes to teach...
-Hybrid classes are hard for all of us...

- Thanks for your enthusiasm this semester, for

engaging in Zoom, and for patience with my
tech SNAFUSs

.Please keep in touch!



