
CS 4110

Programming Languages & Logics

Victory Lap!

Victory Lap

We’ve covered a
lot of territory
this semester…

…now you’re
ready to soar!

Semester in Review

Semester in Review

Mathematical Preliminaries

Semester in Review

Mathematical Preliminaries

Operational Semantics

Semester in Review

Mathematical Preliminaries

Operational Semantics

Denotational Semantics

Semester in Review

Mathematical Preliminaries

Operational Semantics

Denotational Semantics

Axiomatic Semantics

Semester in Review

Mathematical Preliminaries

Operational Semantics

Denotational Semantics

Axiomatic Semantics

λ-Calculus

Semester in Review

Mathematical Preliminaries

Operational Semantics

Denotational Semantics

Axiomatic Semantics

λ-Calculus

λ-Calculus Programming

Semester in Review

Mathematical Preliminaries

Operational Semantics

Denotational Semantics

Axiomatic Semantics

λ-Calculus

λ-Calculus Programming

Simple Types

Semester in Review

Mathematical Preliminaries

Operational Semantics

Denotational Semantics

Axiomatic Semantics

λ-Calculus

λ-Calculus Programming

Simple Types

Advanced Types

Semester in Review

Mathematical Preliminaries

Operational Semantics

Denotational Semantics

Axiomatic Semantics

λ-Calculus

λ-Calculus Programming

Simple Types

Logic and Proof

Advanced Types

Semester in Review

Mathematical Preliminaries

Operational Semantics

Denotational Semantics

Axiomatic Semantics

λ-Calculus

λ-Calculus Programming

Simple Types

Logic and Proof

Advanced Topics

Advanced Types

Semester in Review

Mathematical Preliminaries

Operational Semantics

Denotational Semantics

Axiomatic Semantics

λ-Calculus

λ-Calculus Programming

Simple Types

Logic and Proof

Advanced Topics

Advanced Types

Proofs

Semester in Review

Mathematical Preliminaries

Operational Semantics

Denotational Semantics

Axiomatic Semantics

λ-Calculus

λ-Calculus Programming

Simple Types

Logic and Proof

Advanced Topics

Advanced Types

Proofs Interpreters

Semester in Review

Mathematical Preliminaries

Operational Semantics

Denotational Semantics

Axiomatic Semantics

λ-Calculus

λ-Calculus Programming

Simple Types

Logic and Proof

Advanced Topics

Advanced Types

Proofs Interpreters Verifiers

Trend: Verified Software

JULY 2009 | VOL. 52 | NO. 7 | COMMUNICATIONS OF THE ACM 107

Formal Verification
of a Realistic Compiler
By Xavier Leroy

DOI:10.1145/1538788.1538814

Abstract
This paper reports on the development and formal veri-
fication (proof of semantic preservation) of CompCert, a
compiler from Clight (a large subset of the C programming
language) to PowerPC assembly code, using the Coq proof
assistant both for programming the compiler and for prov-
ing its correctness. Such a verified compiler is useful in the
context of critical software and its formal verification: the
verification of the compiler guarantees that the safety prop-
erties proved on the source code hold for the executable
compiled code as well.

1. INTRODUCTION
Can you trust your compiler? Compilers are generally
assumed to be semantically transparent: the compiled
code should behave as prescribed by the semantics of the
source program. Yet, compilers—and especially optimizing
compilers—are complex programs that perform compli-
cated symbolic transformations. Despite intensive testing,
bugs in compilers do occur, causing the compilers to crash
at compile-time or—much worse—to silently generate an
incorrect executable for a correct source program.

For low-assurance software, validated only by testing,
the impact of compiler bugs is low: what is tested is the
executable code produced by the compiler; rigorous testing
should expose compiler-introduced errors along with errors
already present in the source program. Note, however, that
 compiler-introduced bugs are notoriously difficult to expose
and track down. The picture changes dramatically for safety-
critical, high-assurance software. Here, validation by test-
ing reaches its limits and needs to be complemented or
even replaced by the use of formal methods such as model
 checking, static analysis, and program proof. Almost univer-
sally, these formal verification tools are applied to the source
code of a program. Bugs in the compiler used to turn this
formally verified source code into an executable can poten-
tially invalidate all the guarantees so painfully obtained by
the use of formal methods. In future, where formal methods
are routinely applied to source programs, the compiler could
appear as a weak link in the chain that goes from specifica-
tions to executables. The safety-critical software industry is
aware of these issues and uses a variety of techniques to alle-
viate them, such as conducting manual code reviews of the
generated assembly code after having turned all compiler
optimizations off. These techniques do not fully address the
issues, and are costly in terms of development time and pro-
gram performance.

An obviously better approach is to apply formal meth-
ods to the compiler itself in order to gain assurance that it

preserves the semantics of the source programs. For the last
5 years, we have been working on the development of a real-
istic, verified compiler called CompCert. By verified, we mean
a compiler that is accompanied by a machine-checked proof
of a semantic preservation property: the generated machine
code behaves as prescribed by the semantics of the source
program. By realistic, we mean a compiler that could realisti-
cally be used in the context of production of critical software.
Namely, it compiles a language commonly used for critical
embedded software: neither Java nor ML nor assembly code,
but a large subset of the C language. It produces code for a
processor commonly used in embedded systems: we chose
the PowerPC because it is popular in avionics. Finally, the
compiler must generate code that is efficient enough and
compact enough to fit the requirements of critical embed-
ded systems. This implies a multipass compiler that features
good register allocation and some basic optimizations.

Proving the correctness of a compiler is by no ways a
new idea: the first such proof was published in 196716 (for
the compilation of arithmetic expressions down to stack
machine code) and mechanically verified in 1972.17 Since
then, many other proofs have been conducted, ranging from
single-pass compilers for toy languages to sophisticated
code optimizations.8 In the CompCert experiment, we carry
this line of work all the way to end-to-end verification of a
complete compilation chain from a structured imperative
language down to assembly code through eight intermediate
languages. While conducting the verification of CompCert,
we found that many of the nonoptimizing translations per-
formed, while often considered obvious in the compiler lit-
erature, are surprisingly tricky to formally prove correct.

This paper gives a high-level overview of the CompCert
compiler and its mechanized verification, which uses the
Coq proof assistant.3, 7 This compiler, classically, consists of
two parts: a front-end translating the Clight subset of C to a
low-level, structured intermediate language called Cminor,
and a lightly optimizing back-end generating PowerPC
assembly code from Cminor. A detailed description of Clight
can be found in Blazy and Leroy5; of the compiler front-end
in Blazy et al.4; and of the compiler back-end in Leroy.11, 13
The complete source code of the Coq development, exten-
sively commented, is available on the Web.12

The remainder of this paper is organized as follows.
Section 2 compares and formalizes several approaches to
establishing trust in the results of compilation. Section 3

A previous version of this paper was published in
 Proceedings of the 33rd Symposium on the Principles of
 Programming Languages. ACM, NY, 2006.

• Researchers are increasingly developing
operational models of real-world languages

• Progress in verification makes it possible to
build end-to-end verified systems

• Example: CompCert

- Formal semantics for (a large subset of C)
- Formal semantics for PPC (and later x86)
- Full compiler verified in Coq

Petr4: Formal Foundations for P4 Data Planes

RYAN DOENGES, Cornell University, USA
MINA TAHMASBI ARASHLOO, Cornell University, USA
ALEXANDER CHANG, Cornell University, USA
NEWTON NI, Cornell University, USA
SAMWISE PARKINSON, Cornell University, USA
RUDY PETERSON, Cornell University, USA
ALAIA SOLKO-BRESLIN, Cornell University, USA
AMANDA XU, Cornell University, USA
NATE FOSTER, Cornell University, USA

P4 is a domain-speci�c language for specifying the behavior of packet-processing systems. It is based on
an elegant design with high-level abstractions, such as parsers and match-action pipelines, which can be
compiled to e�cient implementations in hardware or software. Unfortunately, like many industrial languages,
P4 lacks a formal foundation. The P4 speci�cation is a 160-page document with a mixture of informal prose,
graphical diagrams, and pseudocode. The reference compiler is complex, running to over 40KLoC of C++ code.
Clearly neither of these artifacts is suitable for formal reasoning.

This paper presents a new framework, called P���4, that puts P4 on a solid foundation. P���4 uses
standard elements of the semantics engineering toolkit, namely type systems and operational semantics,
to build a compositional semantics that assigns an unambiguous meaning to every P4 program. P���4 is
implemented as an OCaml prototype that has been validated against a suite of over 750 tests from the reference
implementation. While developing P���4, we discovered dozens of bugs in the language speci�cation and the
reference implementation, many of which have been �xed. Furthermore, we have used P���4 to establish the
soundness of P4’s type system, prove key properties such as termination, and formalize a language extension.

1 INTRODUCTION
Most networks today are designed and operated without the use of formal methods. The philosophy
of the Internet Engineering Task Force (IETF), which manages the standards for protocols like TCP
and IP, can be summarized by David Clark’s slogan: “we believe in rough consensus and running
code.” Likewise, Jon Postel’s famous dictum to “be conservative in what you do, be liberal in what
you accept from others,” advocates for a kind of robustness that is achieved not by adhering to
precise logical speci�cations, but rather by designing systems that can tolerate minor deviations
from perfect behavior.

But while it is hard to argue with the success of modern networks, one only has to glance at the
recent headlines to see that operating a network correctly is becoming a huge challenge, especially at
scale [Svaldi 2019]. Outages due to hardware and software bugs occur with alarming frequency and
often lead to costly outages, mysterious performance degradations, and even security vulnerabilities.
A recent survey found that network outages occur several times a month in approximately one
third of organizations, with human factors often a primary cause [Dimensional Research 2016].
Given this context, it is natural to ask whether formal methods may assist in building net-

works that behave as intended. Indeed, a number of recent tools including Header Space Analysis

Authors’ addresses: Ryan Doenges, Cornell University, Ithaca, NY, USA, rhd89@cornell.edu; Mina Tahmasbi Arashloo,
Cornell University, Ithaca, NY, USA, mt822@cornell.edu; Alexander Chang, Cornell University, Ithaca, NY, USA, apc73@
cornell.edu; Newton Ni, Cornell University, Ithaca, NY, USA, cn279@cornell.edu; Samwise Parkinson, Cornell University,
Ithaca, NY, USA, stp59@cornell.edu; Rudy Peterson, Cornell University, Ithaca, NY, USA, rnp39@cornell.edu; Alaia Solko-
Breslin, Cornell University, Ithaca, NY, USA, ajs644@cornell.edu; Amanda Xu, Cornell University, Ithaca, NY, USA, ax49@
cornell.edu; Nate Foster, Cornell University, Ithaca, NY, USA, jnfoster@cs.cornell.edu.

To appear at POPL ’21

Ryan Doenges Mina Tahmasbi Arashloo Santiago Bautista Alexander Chang Newton Ni

Samwise Parkinson Rudy Peterson Alaia Solko-Breslin Amanda Xu Nate Foster

The Petr4 Team

Let's see what's going on in
the Tour this morning!

Data plane: forward packets, balances load,
implements monitoring, etc.

Control Plane: discovers topology,
computes routes, enforces policies, etc.

Network Devices: implement packet processing,
buffering, queueing, etc. at line rate

Network Programming Challenges

Networks are distributed systems with
thousands of interacting nodes

Networks enforce complex security
policies that span trust boundaries

Networks are expected to offer good
performance with limited resources

20201996 2010

Static reachability
for IP networks

Software-defined
networks

Probabilistic
networks

Distributed
control planes

Brief History of Network Verification

NHWZRUN :RUNLQJ GURXS S. BUDGQHU
RHTXHVW IRU CRPPHQWV: 2418 EGLWRU
OEVROHWHV: 1603 HDUYDUG 8QLYHUVLW\
BCP: 25 SHSWHPEHU 1998
CDWHJRU\: BHVW CXUUHQW PUDFWLFH

 IETF WRUkiQg GURXS
 GXideliQeV aQd PURcedXUeV

SWDWXV RI WKLV MHPR

 TKLV GRFXPHQW VSHFLILHV DQ IQWHUQHW BHVW CXUUHQW PUDFWLFHV IRU WKH
 IQWHUQHW CRPPXQLW\, DQG UHTXHVWV GLVFXVVLRQ DQG VXJJHVWLRQV IRU
 LPSURYHPHQWV. DLVWULEXWLRQ RI WKLV PHPR LV XQOLPLWHG.

CRS\ULJKW NRWLFH

 CRS\ULJKW (C) TKH IQWHUQHW SRFLHW\ (1998). AOO RLJKWV RHVHUYHG.

AEVWUDFW

 TKH IQWHUQHW EQJLQHHULQJ TDVN FRUFH (IETF) KDV UHVSRQVLELOLW\ IRU
 GHYHORSLQJ DQG UHYLHZLQJ VSHFLILFDWLRQV LQWHQGHG DV IQWHUQHW
 SWDQGDUGV. IETF DFWLYLWLHV DUH RUJDQL]HG LQWR ZRUNLQJ JURXSV (:GV).
 TKLV GRFXPHQW GHVFULEHV WKH JXLGHOLQHV DQG SURFHGXUHV IRU IRUPDWLRQ
 DQG RSHUDWLRQ RI IETF ZRUNLQJ JURXSV. IW DOVR GHVFULEHV WKH IRUPDO
 UHODWLRQVKLS EHWZHHQ IETF SDUWLFLSDQWV :G DQG WKH IQWHUQHW
 EQJLQHHULQJ SWHHULQJ GURXS (IESG) DQG WKH EDVLF GXWLHV RI IETF
 SDUWLFLSDQWV, LQFOXGLQJ :G CKDLUV, :G SDUWLFLSDQWV, DQG IETF AUHD
 DLUHFWRUV.

TDEOH RI CRQWHQWV

 AEVWUDFW ... 1
 1. IQWURGXFWLRQ .. 2
 1.1. IETF DSSURDFK WR VWDQGDUGL]DWLRQ 4
 1.2. RROHV ZLWKLQ D :RUNLQJ GURXS 4
 2. :RUNLQJ JURXS IRUPDWLRQ 4
 2.1. CULWHULD IRU IRUPDWLRQ 4
 2.2. CKDUWHU ... 6
 2.3. CKDUWHU UHYLHZ & DSSURYDO 8
 2.4. BLUGV RI D IHDWKHU (BOF) 9
 3. :RUNLQJ GURXS OSHUDWLRQ 10
 3.1. SHVVLRQ SODQQLQJ .. 11
 3.2. SHVVLRQ YHQXH ... 11
 3.3. SHVVLRQ PDQDJHPHQW .. 13
 3.4. CRQWHQWLRQ DQG DSSHDOV 15

BUDGQHU BHVW CXUUHQW PUDFWLFH >PDJH 1@

Status Quo

“We believe in rough consensus and running code”

Shaky Foundations

“The system doesn't have a semantics;
in a very deep sense the program does
not have a meaning; what it has is… it's
just whatever happens. That's kind of
the way nature works too, right?”

Bill Joy

Language-Based Approach

SDN SRv6BGP

Control Plane
D

ata Plane

FPGAs +
Smart NICs

Programmable
ASICs

Software
Switches

L2 L3 ACL

Fixed-Function
ASICs

Anatomy of a P4 Program

// Programmer-defined types
header hop {
 bit<7> port;
 bit<1> bos;
}
struct headers {
 hop[9] hops;
}
// Programmer-defined components
parser MyParse(packet_in pkt,
 out headers hdrs,
 inout std_meta meta) {
 state start {
 pkt.extract(hdrs.hops.next);
 transition select(hdrs.hops.last.bos) {
 1: accept;
 default: start;
 }
 }
}
control MyPipe(inout headers hdrs,
 inout std_meta meta) {
 action allow() { }
 action deny() { meta.egress_port = 0xFF; }
 table acl {
 key = { meta.ingress_port : exact;
 meta.egress_port : exact; }
 actions = { allow; deny; }
 default_action = deny();
 }
 apply {
 meta.egress_port =
 (bit<8>)hdrs.hops[0].port;
 if(!hdrs.hops[0].isValid()) exit;
 hdrs.hops.pop_front(1);
 acl.apply();
 }
}
control MyDeparse(packet_out pkt,
 in headers hdrs) {
 apply { pkt.emit(hdrs.hops); }
}
Switch(MyParse(),MyPipe(),MyDeparse()) main;

Ty
pe

s
Pa

rs
er

Co
nt

ro
ls

Formalization Challenges

The “official” definition of P4 resides in an informal
specification and a 40KLoC C++ implementation

Formalization Challenges

The “official” definition of P4 resides in an informal
specification and a 40KLoC C++ implementation

Challenge: Undefined Values

p4c: Unsound Optimization

Source
Program

Parsed AST

Surface AST

Typed AST

Input
Packet

Store &
Environment

Output
Packet

Match Action

Control-Plane
Configuration

Le
xe
r
&

Pa
rs
er

Ty
pe

Ch
ec
ke
r

Ev
al
ua
to
r

V1Model TargetInterpreterMaker

eval_parser

eval_control

eval_expr

eval_stmt

eval_pipeline

hash

mark_to_drop

random

sta
rt(

)

acc
ept

/re
jec

t

ing
res

s()

mark_to_drop(meta)

Petr4 Architecture

Source
Program

Parsed AST

Surface AST

Typed AST

Input
Packet

Store &
Environment

Output
Packet

Match Action

Control-Plane
Configuration

Le
xe
r
&

Pa
rs
er

Ty
pe

Ch
ec
ke
r

Ev
al
ua
to
r

V1Model TargetInterpreterMaker

eval_parser

eval_control

eval_expr

eval_stmt

eval_pipeline

hash

mark_to_drop

random

sta
rt(

)

acc
ept

/re
jec

t

ing
res

s()

mark_to_drop(meta)

Petr4 Architecture

Source
Program

Parsed AST

Surface AST

Typed AST

Input
Packet

Store &
Environment

Output
Packet

Match Action

Control-Plane
Configuration

Le
xe
r
&

Pa
rs
er

Ty
pe

Ch
ec
ke
r

Ev
al
ua
to
r

V1Model TargetInterpreterMaker

eval_parser

eval_control

eval_expr

eval_stmt

eval_pipeline

hash

mark_to_drop

random

sta
rt(

)

acc
ept

/re
jec

t

ing
res

s()

mark_to_drop(meta)

Petr4 Architecture

Modular design allows
customizing semantics for each
architecture

Source
Program

Parsed AST

Surface AST

Typed AST

Input
Packet

Store &
Environment

Output
Packet

Match Action

Control-Plane
Configuration

Le
xe
r
&

Pa
rs
er

Ty
pe

Ch
ec
ke
r

Ev
al
ua
to
r

V1Model TargetInterpreterMaker

eval_parser

eval_control

eval_expr

eval_stmt

eval_pipeline

hash

mark_to_drop

random

sta
rt(

)

acc
ept

/re
jec

t

ing
res

s()

mark_to_drop(meta)

Petr4 Syntax

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

Petr4: Formal Foundations for P4 Data Planes 7

d ::= bool booleans
| int integers
| bithexpi bitstrings
| error {5 } errors
| match_kind {5 } match kinds
| enum - {5 } enums
| {5 : g} records
| header {5 : g} headers
| g [=] stacks
| - type variables

g ::= d data types
| table tables
| functionh- i(3 G : d) ! dret functions
| ctor(G : g) ! gret constructors

3 ::= in copy-in
| out copy-out
| inout copy-in-out

Fig. 2. Core P4 types and directions.

3.1 Syntax
Core P4 is set up like a standard imperative language, with separate syntactic classes for expressions,
statements, and declarations. It also includes mutable variables, generic functions, and standard
types such as booleans, enumerations, and records, among others. The P4 speci�cation imposes a
multitude of restrictions on type nesting, parameter types, locations of instantiations, and much
else. We avoid modeling these restrictions in Core P4, which is nonetheless type safe.

3.1.1 Notation. We typeset metavariables in italics and keywords and other concrete identi�ers
in sans serif. We avoid explicit indexing of sequences by writing a line over the term we would
otherwise index. For instance, G represents a list G1, G2, . . . , G= . We write G for ordinary variables
and - for type variables and names. We write 5 for �elds of records or members of enumeration
and “open enumeration” types. There are two open enums, which have the reserved type names
error and match_kind. Locations ✓ appear in the dynamic semantics. We write ✓ fresh to obtain a
new location ✓ .

3.1.2 Types. P4 types (�g. 2) are separated into general types and data types. The base types are
booleans (bool), in�nite-precision signed integers (int), and �xed-precision unsigned integers
(bit). More precisely, the type bith4i describes the set of unsigned bit strings of width 4 , where
4 must be a “compile-time known” expression that is reducible to a value during typechecking.
This shows how types in P4 may depend on certain simple values. Core P4 also has user-de�ned
enumerations, which are de�ned in a single declaration, and two open enumerations match_kind
and error which can be expanded by repeated declarations. P4’s core data structures are records,
headers, and stacks. Records and headers are similar, but headers have an extra bit to track validity.
The validity bit facilitates a compiler optimization that packs multiple headers into the same storage
after proving their validity bits are mutually disjoint. Stacks are �xed-length arrays of headers.
Having omitted parsers in Core P4, we also omit P4’s special features for parsing stacks, so we
don’t model next and last. Finally, there are type variables - , which arise in generic functions.
The remaining types are all callable in one way or another and are separated from the value

types to prevent straying too far from P4’s restriction to �rst-order computation. Tables take no
parameters and return nothing. The function type captures the behavior of P4 controls, functions,
and actions in a single type. Function parameters are annotated with directions that determine
the calling convention, as discussed below. Constructors, unlike functions, may take functions as

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

Petr4: Formal Foundations for P4 Data Planes 7

d ::= bool booleans
| int integers
| bithexpi bitstrings
| error {5 } errors
| match_kind {5 } match kinds
| enum - {5 } enums
| {5 : g} records
| header {5 : g} headers
| g [=] stacks
| - type variables

g ::= d data types
| table tables
| functionh- i(3 G : d) ! dret functions
| ctor(G : g) ! gret constructors

3 ::= in copy-in
| out copy-out
| inout copy-in-out

Fig. 2. Core P4 types and directions.

3.1 Syntax
Core P4 is set up like a standard imperative language, with separate syntactic classes for expressions,
statements, and declarations. It also includes mutable variables, generic functions, and standard
types such as booleans, enumerations, and records, among others. The P4 speci�cation imposes a
multitude of restrictions on type nesting, parameter types, locations of instantiations, and much
else. We avoid modeling these restrictions in Core P4, which is nonetheless type safe.

3.1.1 Notation. We typeset metavariables in italics and keywords and other concrete identi�ers
in sans serif. We avoid explicit indexing of sequences by writing a line over the term we would
otherwise index. For instance, G represents a list G1, G2, . . . , G= . We write G for ordinary variables
and - for type variables and names. We write 5 for �elds of records or members of enumeration
and “open enumeration” types. There are two open enums, which have the reserved type names
error and match_kind. Locations ✓ appear in the dynamic semantics. We write ✓ fresh to obtain a
new location ✓ .

3.1.2 Types. P4 types (�g. 2) are separated into general types and data types. The base types are
booleans (bool), in�nite-precision signed integers (int), and �xed-precision unsigned integers
(bit). More precisely, the type bith4i describes the set of unsigned bit strings of width 4 , where
4 must be a “compile-time known” expression that is reducible to a value during typechecking.
This shows how types in P4 may depend on certain simple values. Core P4 also has user-de�ned
enumerations, which are de�ned in a single declaration, and two open enumerations match_kind
and error which can be expanded by repeated declarations. P4’s core data structures are records,
headers, and stacks. Records and headers are similar, but headers have an extra bit to track validity.
The validity bit facilitates a compiler optimization that packs multiple headers into the same storage
after proving their validity bits are mutually disjoint. Stacks are �xed-length arrays of headers.
Having omitted parsers in Core P4, we also omit P4’s special features for parsing stacks, so we
don’t model next and last. Finally, there are type variables - , which arise in generic functions.
The remaining types are all callable in one way or another and are separated from the value

types to prevent straying too far from P4’s restriction to �rst-order computation. Tables take no
parameters and return nothing. The function type captures the behavior of P4 controls, functions,
and actions in a single type. Function parameters are annotated with directions that determine
the calling convention, as discussed below. Constructors, unlike functions, may take functions as

Types Expressions
295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

8 R. Doenges, M. T. Arashloo, A. Chang, S. Parkinson, R. Peterson, A. Solko-Brelin, A. Xu, and N. Foster

exp ::= 1 booleans
| =F integers
| G variables
| exp1 [exp2] array accesses
| exp1 [exp2:exp3] bitstring slices
| exp unary ops
| exp1 � exp2 binary ops
| (g) exp casts
| {5 = exp} records
| exp.5 �elds
| - .5 type members
| exphdi(exp) function call

stmt ::= exphdi(exp) method call
| exp := exp assignment
| if (exp) stmt else stmt conditional
| {stmt} sequencing
| exit exit
| return exp return
| var_decl variable declaration

lval ::= G local variables
| lval.5 �elds
| lval [=] stack elements
| lval [=1 : =2] bitstring slices

Fig. 3. Core P4 expression, statement, and l-value syntax. The l-values are a subset of the expressions.

parameters and return functions. This allows control constructors to produce controls and take
other controls as parameters.

3.1.3 Expressions. Booleans 1 are either true or false. Literals =F are unsigned bitstrings of width
F , if F is a natural number. We also allow F to be 1, in which case = is allowed to be signed.
Variables refer to function parameters, local variables, or constant declarations. The bitstring slice
operator 4 [4hi:4lo] computes a slice of the bits of 4 from the high bit at 4hi down to the low bit 4lo
(inclusive). The type of the expression is bith4hi � 4lo + 1i. But these expressions are not numbers,
so this could be a type of any width! P4 addresses this by stipulating that the index expressions
must be evaluated at compile time. Unary operations and binary operations � are drawn from a
set of symbols including standard arithmetic and bitwise operations as well as comparisons and
equality. Casts are permitted beween numeric types and from record types to header types, because
there are no header literals in Core P4 (or even in P4, for that matter). Records are constructed with
standard syntax for record literals. Records and headers both support �eld access, written with
standard “dot” notation. Members of enums and open enums are referenced with similar syntax.
Finally, function calls, including type arguments, may appear in expressions.

3.1.4 Statements. Core P4’s statement language is small and mostly standard. Exit statements
abort an entire computation. Variable declarations without an initializer use a target-dependent
initial value. Constants are available for use in types and other compile-time-known settings, so
their intializers must themselves be compile-time known. Instantiations invoke a constructor of
the type - and name the newly constructed object G . In full P4 there are restrictions on what kinds
of objects can be instantiated where, but we allow instantiations anywhere in Core P4 programs.

3.1.5 Declarations and programs. Syntax for declarations is given in section 3.1.4. A Core P4
program is a sequence of declarations, processed in order. We have already introduced variable
declarations. Type declarations introduce type abbreviations, de�ne new enum types, or extend
open enums with new members. We will discuss each object declaration separately.

3.1.6 Tables. To a �rst approximation, a table can be thought of as a control-plane programmable,
multi-way conditional. Table declarations specify a tuple of keys to match on and a list of partially
applied functions the control plane can pick to run. Each key is annotated with a match_kind to
specify the language of match expressions allowed in the table’s rules. For example, IP routing
tables match IP addresses with lpm (i.e.,longest-pre�x match), where each rule speci�es a pre�x

Statements
295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

8 R. Doenges, M. T. Arashloo, A. Chang, S. Parkinson, R. Peterson, A. Solko-Brelin, A. Xu, and N. Foster

exp ::= 1 booleans
| =F integers
| G variables
| exp1 [exp2] array accesses
| exp1 [exp2:exp3] bitstring slices
| exp unary ops
| exp1 � exp2 binary ops
| (g) exp casts
| {5 = exp} records
| exp.5 �elds
| - .5 type members
| exphdi(exp) function call

stmt ::= exphdi(exp) method call
| exp := exp assignment
| if (exp) stmt else stmt conditional
| {stmt} sequencing
| exit exit
| return exp return
| var_decl variable declaration

lval ::= G local variables
| lval.5 �elds
| lval [=] stack elements
| lval [=1 : =2] bitstring slices

Fig. 3. Core P4 expression, statement, and l-value syntax. The l-values are a subset of the expressions.

parameters and return functions. This allows control constructors to produce controls and take
other controls as parameters.

3.1.3 Expressions. Booleans 1 are either true or false. Literals =F are unsigned bitstrings of width
F , if F is a natural number. We also allow F to be 1, in which case = is allowed to be signed.
Variables refer to function parameters, local variables, or constant declarations. The bitstring slice
operator 4 [4hi:4lo] computes a slice of the bits of 4 from the high bit at 4hi down to the low bit 4lo
(inclusive). The type of the expression is bith4hi � 4lo + 1i. But these expressions are not numbers,
so this could be a type of any width! P4 addresses this by stipulating that the index expressions
must be evaluated at compile time. Unary operations and binary operations � are drawn from a
set of symbols including standard arithmetic and bitwise operations as well as comparisons and
equality. Casts are permitted beween numeric types and from record types to header types, because
there are no header literals in Core P4 (or even in P4, for that matter). Records are constructed with
standard syntax for record literals. Records and headers both support �eld access, written with
standard “dot” notation. Members of enums and open enums are referenced with similar syntax.
Finally, function calls, including type arguments, may appear in expressions.

3.1.4 Statements. Core P4’s statement language is small and mostly standard. Exit statements
abort an entire computation. Variable declarations without an initializer use a target-dependent
initial value. Constants are available for use in types and other compile-time-known settings, so
their intializers must themselves be compile-time known. Instantiations invoke a constructor of
the type - and name the newly constructed object G . In full P4 there are restrictions on what kinds
of objects can be instantiated where, but we allow instantiations anywhere in Core P4 programs.

3.1.5 Declarations and programs. Syntax for declarations is given in section 3.1.4. A Core P4
program is a sequence of declarations, processed in order. We have already introduced variable
declarations. Type declarations introduce type abbreviations, de�ne new enum types, or extend
open enums with new members. We will discuss each object declaration separately.

3.1.6 Tables. To a �rst approximation, a table can be thought of as a control-plane programmable,
multi-way conditional. Table declarations specify a tuple of keys to match on and a list of partially
applied functions the control plane can pick to run. Each key is annotated with a match_kind to
specify the language of match expressions allowed in the table’s rules. For example, IP routing
tables match IP addresses with lpm (i.e.,longest-pre�x match), where each rule speci�es a pre�x

Petr4 Semantics

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

12 R. Doenges, M. T. Arashloo, A. Chang, S. Parkinson, R. Peterson, A. Solko-Brelin, A. Xu, and N. Foster

G 8 dom(⌃) �(G) = g

⌃, �,� ` G : g goes inout
T�V��

G 2 dom(⌃) �(G) = g

⌃, �,� ` G : g goes in
T�V���C����

F < 1
⌃, �,� ` =F : bithFi goes in

T�B��
⌃, �,� ` 1 : bool goes in

T�B���

⌃, �,� ` =1 : int goes in
T�I������

⌃, �,� ` exp1 : g [=] goes 3
⌃, �,� ` exp2 : bith32i

⌃, �,� ` exp1 [exp2] : g goes 3
T�I����

�(-) = enum - {5 }
⌃, �,� ` - .58 : enum - {5 } goes in

T�E���
�(error) = error {5 }

⌃, �,� ` error.5 : error goes in
T�E��

⌃, �,� ` exp : g0 goes 3
⌃,� ` g g 0 � ` g0 � g 0

⌃, �,� ` (g) exp : g 0 goes 3
T�C���

⌃, �,� ` exp : g

⌃, �,� ` {5 = exp} : {5 : g} goes in
T�R�����

T (�, , g1) = g2 ⌃, �,� ` exp : g1
⌃, �,� ` exp : g2 goes in

T�UO�

T (�, �, g1, g2) = g3
⌃, �,� ` exp1 : g1 ⌃, �,� ` exp2 : g2

⌃, �,� ` exp1 � exp2 : g3 goes in
T�B��O�

⌃, �,� ` exp : header {5 : g} goes 3
⌃, �,� ` exp.58 : g8 goes 3

T�M��H��
⌃, �,� ` exp : {5 : g} goes 3
⌃, �,� ` exp.58 : g8 goes 3

T�M��R��

�(match_kind) = match_kind {5 }
⌃, �,� ` match_kind.5 : match_kind goes in

T�M����

⌃, �,� ` exp1 : bithFi goes 3 ⌃, �,� ` exp2 : int ⌃, �,� ` exp3 : int
h⌃, exp2i =2 h⌃, exp3i =3 F > =2 � =3 � 0

⌃, �,� ` exp1 [exp2 : exp3] : bith=2 � =3 + 1i goes 3
T�S����

⌃, �,� ` exp : functionh- i(3 G : g) ! gret
⌃,�[- = d] ` g g 0 ⌃, �,� ` exp : g 0 goes 3 ⌃,�[- = d] ` gret g 0ret

⌃, �,� ` exphdi(exp) : g 0ret goes in
T�C���

Fig. 8. Expression typing rules.

bit slice indexes receive both treatments. The function call rule uses type simpli�cation to handle
substituting type arguments into parameter types and return types.

Type System

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

18 R. Doenges, M. T. Arashloo, A. Chang, S. Parkinson, R. Peterson, A. Solko-Brelin, A. Xu, and N. Foster

hC,�,f, n, expi + hf 0, header {valid, 5 : g = val}i
hC,�,f, n, exp.58i + hf 0, val8i

E�H��M��

hC,�,f, n, expi + hf 0, header {!valid, 5 : g = val}i
hC,�,f, n, exp.58i + hf 0, havoc(g8)i

E�H��M��U����

hC,�,f, n, expi + hf1, clos(n2 ,- ,3 G : g, g, decl stmt)i
h�[- = d],f, n, gi +g g 0

hC,�,f1, n,3 G : g 0 := expi +copy hf2, G 7! ✓, lval := ✓i
hC,�[- = d],f2, n2 [G 7! ✓], decli + h�2,f3, n2, exiti

hC,�,f3, n, lval := f3 (✓)i +write f4
hC,�,f, n, exphdi(exp)i + hf4, exiti

E�C����D���E���

hC,�,f, n, expi + hf1, clos(n2 ,- ,3 G : g, g, decl stmt)i
h�[- = d],f, n, gi +g g 0

hC,�,f1, n,3 G : g := expi +copy hf2, G 7! ✓, lval := ✓i
hC,�[- = d],f2, n2 [G 7! ✓], decli + h�2,f3, n2, continuei

hC,�2,f3, n2, stmti + hf4, n3, exiti hC,�,f4, n, lval := f4 (✓)i +write f5
hC,�,f, n, exphdi(exp)i + hf5, exiti

E�C����S���E���

hC,�,f, n, expi + hf1, native(G,3 G : g, g)i
hC,�,f1, n,3 G : g := expi +copy hf2, G 7! ✓, lval := ✓i

N(G,f2, [G 7! ✓]) = hf3, vali hC,�,f3, n, lval := f3 (✓)i +write f4
hC,�,f, n, exp(exp)i + hf4, vali

E�C���N

hC,�,f, n, expi + hf1, clos(n2 ,- ,3 G : g, g, decl stmt)i
h�[- = d],f, n, gi +g g 0

hC,�,f1, n,3 G : g 0 := expi +copy hf2, G 7! ✓, lval := ✓i
hC,�[- = d],f2, n2 [G 7! ✓], decli + h�2,f3, n2, continuei

hC,�2,f3, n2, stmti + hf4, n3, return vali hC,�,f4, n, lval := f4 (✓)i +write f5
hC,�,f, n, exphdi(exp)i + hf5, vali

E�C���

Fig. 17. Semantics for expressions II.

Operational Semantics

Petr4 Metatheory

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

Petr4: Formal Foundations for P4 Data Planes 21

these additional declarations in a straightforward manner: during type checking and evaluation, it
simply scans the list of declarations in program order, considering each types or object, threading
the context, environment, and store through the sequence as appropriate.

3.9 Type Soundness and Termination
Big-step semantics fail to distinguish between programs that “go wrong” and programs that run
forever. For a language with recursion or loops, this forms a serious obstacle to proving type
safety. Fortunately, the parser-free fragment of P4 has neither, so we can prove that all well-typed
expressions and statements evaluate to a �nal value of appropriate type. The main theorem shows
this for statements. We �rst have to de�ne what it means for a con�guration to be safe.

De�nition 3.1. A statement con�guration hC,�,f, n, stmti is said to be safe under ⌅, ⌃, �,� with
typing outputs ⌃0, �0, written ⌅, ⌃, �,� ` hC,�,f, n, stmti a ⌃0, �0, if (i) ⌅,� ` f , (ii) ⌅,� ` n : �,
and (iii) ⌃, �,� ` BC<C a ⌃0, �0.

Next, we state the main theorem.

T������ 3.2. Let hC,�,f, n, stmti be an initial con�guration and take contexts ⌅, ⌃, �,�. Suppose
the con�guration is safe under the contexts with typing outputs ⌃0 and �0 and ⌃ ` hf, ni. There exists
a �nal con�guration hf 0, n 0, sigi and a store typing ⌅0 ◆ ⌅ such that hC,�,f, n, stmti + hf 0, n 0, sigi
and ⌅0, ⌃0, �0,� ` hf 0, n 0, sigi.

Appendix B develops this result in detail, with additional supporting de�nitions and lemmas for
expressions and variable declarations, as well as a formal proof.

Note that this is a also a “weak termination” result: it states that a �nal con�guration exists, but
does not (and cannot, in the language of big step semantics) say that all possible ways of evaluating
a program will terminate.

4 IMPLEMENTATION
This section discusses our implementation of P���4. Unlike the mathematical semantics for Core P4
developed in the last section, which only models a small subset of the language, our implementation
is designed to handle the full P416 language, with a few caveats and limitations, as discussed below.

Overview. Figure 22 (a) depicts the architecture of the P���4 implementation, as well as the
way that programs and packets �ow through it. We implemented P���4 in OCaml, using the
Menhir parser generator, the Jane Street Core library, and the Bucklescript OCaml-to-Javascript
compiler. In total, the P���4 implementation runs 13KLoC (as reported by cloc) of which 1.5KLoC
implements lexing and parsing, 1.5KLoC de�nes syntax, 4KLoC implements typechecking, and
4.5KLoC implements evaluation/interpretation. The 1.5KLoC left over is miscellaneous utility code.

Lexer and Parser. The P416 semantics de�nes the syntax of the language with an EBNF grammar.
Unfortunately the grammar cannot be parsed by any LALR(1) parser due to a con�ict between
generics and bit shifts over themeaning of the symbols ‘<’ and ‘>’. As a workaround, the speci�cation
separates the tokens for identi�ers into two categories:

The grammar is actually ambiguous, so the lexer and the parser must collaborate for
parsing the language. In particular, the lexer must be able to distinguish two kinds of
identi�ers: type names previously introduced (TYPE_IDENTIFIER tokens) [and] regular
identi�ers (IDENTIFIER token).

Hence, the parser must keep track of rudimentary type information as well as lexical scope, so that
the lexer can produce the correct tokens.We follow Jourdan and Pottier’s approach for implementing

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

Petr4: Formal Foundations for P4 Data Planes 21

these additional declarations in a straightforward manner: during type checking and evaluation, it
simply scans the list of declarations in program order, considering each types or object, threading
the context, environment, and store through the sequence as appropriate.

3.9 Type Soundness and Termination
Big-step semantics fail to distinguish between programs that “go wrong” and programs that run
forever. For a language with recursion or loops, this forms a serious obstacle to proving type
safety. Fortunately, the parser-free fragment of P4 has neither, so we can prove that all well-typed
expressions and statements evaluate to a �nal value of appropriate type. The main theorem shows
this for statements. We �rst have to de�ne what it means for a con�guration to be safe.

De�nition 3.1. A statement con�guration hC,�,f, n, stmti is said to be safe under ⌅, ⌃, �,� with
typing outputs ⌃0, �0, written ⌅, ⌃, �,� ` hC,�,f, n, stmti a ⌃0, �0, if (i) ⌅,� ` f , (ii) ⌅,� ` n : �,
and (iii) ⌃, �,� ` BC<C a ⌃0, �0.

Next, we state the main theorem.

T������ 3.2. Let hC,�,f, n, stmti be an initial con�guration and take contexts ⌅, ⌃, �,�. Suppose
the con�guration is safe under the contexts with typing outputs ⌃0 and �0 and ⌃ ` hf, ni. There exists
a �nal con�guration hf 0, n 0, sigi and a store typing ⌅0 ◆ ⌅ such that hC,�,f, n, stmti + hf 0, n 0, sigi
and ⌅0, ⌃0, �0,� ` hf 0, n 0, sigi.

Appendix B develops this result in detail, with additional supporting de�nitions and lemmas for
expressions and variable declarations, as well as a formal proof.

Note that this is a also a “weak termination” result: it states that a �nal con�guration exists, but
does not (and cannot, in the language of big step semantics) say that all possible ways of evaluating
a program will terminate.

4 IMPLEMENTATION
This section discusses our implementation of P���4. Unlike the mathematical semantics for Core P4
developed in the last section, which only models a small subset of the language, our implementation
is designed to handle the full P416 language, with a few caveats and limitations, as discussed below.

Overview. Figure 22 (a) depicts the architecture of the P���4 implementation, as well as the
way that programs and packets �ow through it. We implemented P���4 in OCaml, using the
Menhir parser generator, the Jane Street Core library, and the Bucklescript OCaml-to-Javascript
compiler. In total, the P���4 implementation runs 13KLoC (as reported by cloc) of which 1.5KLoC
implements lexing and parsing, 1.5KLoC de�nes syntax, 4KLoC implements typechecking, and
4.5KLoC implements evaluation/interpretation. The 1.5KLoC left over is miscellaneous utility code.

Lexer and Parser. The P416 semantics de�nes the syntax of the language with an EBNF grammar.
Unfortunately the grammar cannot be parsed by any LALR(1) parser due to a con�ict between
generics and bit shifts over themeaning of the symbols ‘<’ and ‘>’. As a workaround, the speci�cation
separates the tokens for identi�ers into two categories:

The grammar is actually ambiguous, so the lexer and the parser must collaborate for
parsing the language. In particular, the lexer must be able to distinguish two kinds of
identi�ers: type names previously introduced (TYPE_IDENTIFIER tokens) [and] regular
identi�ers (IDENTIFIER token).

Hence, the parser must keep track of rudimentary type information as well as lexical scope, so that
the lexer can produce the correct tokens.We follow Jourdan and Pottier’s approach for implementing

Proof is mostly standard, but needs a
logical relations argument for termination…

Future Work
•Poulet4: Coq port (with Princeton gang)
•Verified compiler transformations
-Inlining functions / controls
-Parser unrolling / vectorization
-Code motion

•Code generation for new targets
-eBPF
-FPGAs
-Bluespec/Kami/ChiselFlow

End Game

• Final Project (due today; 48-hour extension until Friday)
• Course Evaluations!
• (Regrades)

After 4110

Cornell Courses
• CS 4120 (Compilers)
• CS 5114 / 6114 (Network PL)
• CS 6110 (Advanced PL)
• CS 6120 (Advanced Compilers)
• CS 61xx (Special Topics)
Research
• CS 4999
• Summer
• Open Source (e.g., GSOC)

Doing a PhD…

Applications
• Transcript
• Recommendation Letters
• Statements
• (GRE)
Masters Degree?
• Optional not required (in North America)

Conferences
• SIGPLAN “Big 4”: POPL, PLDI, ICFP, OOPSLA
• Programming Languages Mentoring Workshop (PLMW)

Industry

Compilers
• GPUs
• TPUs
• LLVM
• WebAssembly
• Rust

Verification
• Startups (Bedrock Systems, Correct Computation, etc.)
• Amazon Automated Reasoning Group
• Google Project Oak

Thank you!🙏

• CS 4110 is one of my favorite classes to teach…

• Hybrid classes are hard for all of us…

• Thanks for your enthusiasm this semester, for
engaging in Zoom, and for patience with my
tech SNAFUs

• Please keep in touch!

