

CS 4110

Programming Languages & Logics

Lecture 36
Concurrency

Concurrency

All of the languages we have seen so far in this course have been
sequential, performing one step of computation at a time.

In the next few lectures we will consider languages where
multiple threads of execution may be interleaved
simultaneously.

These languages can be used to model computations that
execute on parallel and distributed architectures.

2

Process Calculi

In the 1970s, Tony Hoare, Robin Milner, and others (correctly)
observed that in the future, computers with shared-nothing
architectures communicating by sending messages to each
other would be important.

Hoare’s Communicating Sequential Processes were an early and
highly-influential language that capture amessage passing form
of concurrency.

Many languages have built on CSP including Milner’s CCS and
π-calculus, Petri nets, and others. We’re going to look at
π-calculus, which is a minimal core calculus in the style of the
λ-calculus.

3

π-calculus Syntax

The π-calculus is a minimal formalism that models capture the
“essence” of concurrency based onmessage-passing:

The key constructs are based on the ability to interact by
sending and receiving channel names:

x, y, z ∈ N Names

π ::= τ | x⟨y⟩ | x(y) | [x = y]π Prefixes

M,N ::= 0 | π.P | M+ M Summations

P,Q, R ::= M | P1 | P2 | νx. P | !P Processes

In examples, we will often appreviate π.0 as π

4

π-calculus Syntax

The π-calculus is a minimal formalism that models capture the
“essence” of concurrency based onmessage-passing:

The key constructs are based on the ability to interact by
sending and receiving channel names:

x, y, z ∈ N Names

π ::= τ | x⟨y⟩ | x(y) | [x = y]π Prefixes

M,N ::= 0 | π.P | M+ M Summations

P,Q, R ::= M | P1 | P2 | νx. P | !P Processes

In examples, we will often appreviate π.0 as π

4

π-calculus Syntax

The π-calculus is a minimal formalism that models capture the
“essence” of concurrency based onmessage-passing:

The key constructs are based on the ability to interact by
sending and receiving channel names:

x, y, z ∈ N Names

π ::= τ | x⟨y⟩ | x(y) | [x = y]π Prefixes

M,N ::= 0 | π.P | M+ M Summations

P,Q, R ::= M | P1 | P2 | νx. P | !P Processes

In examples, we will often appreviate π.0 as π

4

π-calculus Syntax

The π-calculus is a minimal formalism that models capture the
“essence” of concurrency based onmessage-passing:

The key constructs are based on the ability to interact by
sending and receiving channel names:

x, y, z ∈ N Names

π ::= τ | x⟨y⟩ | x(y) | [x = y]π Prefixes

M,N ::= 0 | π.P | M+ M Summations

P,Q, R ::= M | P1 | P2 | νx. P | !P Processes

In examples, we will often appreviate π.0 as π

4

π-calculus Syntax

The π-calculus is a minimal formalism that models capture the
“essence” of concurrency based onmessage-passing:

The key constructs are based on the ability to interact by
sending and receiving channel names:

x, y, z ∈ N Names

π ::= τ | x⟨y⟩ | x(y) | [x = y]π Prefixes

M,N ::= 0 | π.P | M+ M Summations

P,Q, R ::= M | P1 | P2 | νx. P | !P Processes

In examples, we will often appreviate π.0 as π

4

π-calculus Syntax

The π-calculus is a minimal formalism that models capture the
“essence” of concurrency based onmessage-passing:

The key constructs are based on the ability to interact by
sending and receiving channel names:

x, y, z ∈ N Names

π ::= τ | x⟨y⟩ | x(y) | [x = y]π Prefixes

M,N ::= 0 | π.P | M+ M Summations

P,Q, R ::= M | P1 | P2 | νx. P | !P Processes

In examples, we will often appreviate π.0 as π

4

π-calculus Syntax

The π-calculus is a minimal formalism that models capture the
“essence” of concurrency based onmessage-passing:

The key constructs are based on the ability to interact by
sending and receiving channel names:

x, y, z ∈ N Names

π ::= τ | x⟨y⟩ | x(y) | [x = y]π Prefixes

M,N ::= 0 | π.P | M+ M Summations

P,Q, R ::= M | P1 | P2 | νx. P | !P Processes

In examples, we will often appreviate π.0 as π

4

Examples

a(x).b̄⟨x⟩ | νz. (ā⟨z⟩)

5

Examples

a(x) + b(x) | νz. (ā⟨z⟩ + b̄⟨z⟩)

5

Reaction

τ.P+ M → P
R-TAU

(x⟨y⟩.P1 + M1) | (x(z).P2 + M2) → P1 | P2{y/z}
R-REACT

P1 → P′
1

P1 | P2 → P′
1 | P2

R-PAR

P → P′

νx. P → νx. P′ R-RES

P ≡ P′ P′ → Q′ Q′ ≡ Q
P → Q

R-STRUCT

6

Reaction

τ.P+ M → P
R-TAU

(x⟨y⟩.P1 + M1) | (x(z).P2 + M2) → P1 | P2{y/z}
R-REACT

P1 → P′
1

P1 | P2 → P′
1 | P2

R-PAR

P → P′

νx. P → νx. P′ R-RES

P ≡ P′ P′ → Q′ Q′ ≡ Q
P → Q

R-STRUCT

6

Reaction

τ.P+ M → P
R-TAU

(x⟨y⟩.P1 + M1) | (x(z).P2 + M2) → P1 | P2{y/z}
R-REACT

P1 → P′
1

P1 | P2 → P′
1 | P2

R-PAR

P → P′

νx. P → νx. P′ R-RES

P ≡ P′ P′ → Q′ Q′ ≡ Q
P → Q

R-STRUCT

6

Reaction

τ.P+ M → P
R-TAU

(x⟨y⟩.P1 + M1) | (x(z).P2 + M2) → P1 | P2{y/z}
R-REACT

P1 → P′
1

P1 | P2 → P′
1 | P2

R-PAR

P → P′

νx. P → νx. P′ R-RES

P ≡ P′ P′ → Q′ Q′ ≡ Q
P → Q

R-STRUCT

6

Reaction

τ.P+ M → P
R-TAU

(x⟨y⟩.P1 + M1) | (x(z).P2 + M2) → P1 | P2{y/z}
R-REACT

P1 → P′
1

P1 | P2 → P′
1 | P2

R-PAR

P → P′

νx. P → νx. P′ R-RES

P ≡ P′ P′ → Q′ Q′ ≡ Q
P → Q

R-STRUCT

6

Structural Congruence

Definition (Structural Congruence)
[x = x]π.P≡π.P !P≡ P |!P

M1 + (M2 + M3)≡ (M1 + M2) + M3 M1 + M2≡M2 + M1

P1 | (P2 | P3)≡ (P1 | P2) | P3 P1 | P2≡ P2 | P1
M+ 0≡M P | 0≡ P

νx. νy. P≡ νy. νx. P νx. 0≡ 0

νx. P1 | P2 ≡ P1 | (νx. P2), if x ̸∈ FV(P1)

7

Structural Congruence

Theorem (Standard Form)
Each process is structurally congruent to one of the form

νx⃗. (M1 | . . . | Mj |!P1 | . . . |!Pk)

where each Pi is also in standard form.

Proof (sketch): repeatedly use α-conversion and scope
extrusion: P | νx. Q ≡ νx. P | Q.

7

Structural Congruence

Theorem (Standard Form)
Each process is structurally congruent to one of the form

νx⃗. (M1 | . . . | Mj |!P1 | . . . |!Pk)

where each Pi is also in standard form.

Proof (sketch): repeatedly use α-conversion and scope
extrusion: P | νx. Q ≡ νx. P | Q.

7

Programming in the π-calculus

Just as with λ-calculus, we can encode richer data structures
and computations using the π-calculus primitives.

8

Polyadic π-Calculus

The send and receive primitives are monadic—they
communicate a single name over a given channel. It is often
useful to be able to send several names.

We can try to encode polyadic sends and receives as follows:

x⟨y1, . . . , yk⟩.P ≜ x⟨y1⟩.x⟨yk⟩.P

x(z1, . . . , zk).P ≜ x(z1).x⟨zk⟩.P

But unfortunately this doesn’t work... why?

9

Polyadic π-Calculus

The send and receive primitives are monadic—they
communicate a single name over a given channel. It is often
useful to be able to send several names.

We can try to encode polyadic sends and receives as follows:

x⟨y1, . . . , yk⟩.P ≜ x⟨y1⟩.x⟨yk⟩.P

x(z1, . . . , zk).P ≜ x(z1).x⟨zk⟩.P

But unfortunately this doesn’t work... why?

9

Polyadic π-Calculus

The send and receive primitives are monadic—they
communicate a single name over a given channel. It is often
useful to be able to send several names.

We can try to encode polyadic sends and receives as follows:

x⟨y1, . . . , yk⟩.P ≜ x⟨y1⟩.x⟨yk⟩.P

x(z1, . . . , zk).P ≜ x(z1).x⟨zk⟩.P

But unfortunately this doesn’t work... why?

9

Polyadic π-calculus

To obtain an encoding that works correctly, we can create a fresh
name and communicate the values over that channel:

x⟨y1, . . . , yk⟩.P ≜ νw. (x⟨w⟩.w⟨y1⟩.w⟨yk⟩).P
wherew ̸∈ FV(P)

x(z1, . . . , zk).P ≜ x(w).w(z1).w⟨zk⟩.P

Using this (adequate) encoding, we will freely use polyadic
sends and receives in examples.

(⃗x⟨⃗y⟩.P1 + M1) | (⃗x(⃗z).P2 + M2) → P1 | P2{⃗y/⃗z}
R-POLYREACT

We’ll use the notation x.P and x.P for 0-ary sends and receives.

10

Polyadic π-calculus

To obtain an encoding that works correctly, we can create a fresh
name and communicate the values over that channel:

x⟨y1, . . . , yk⟩.P ≜ νw. (x⟨w⟩.w⟨y1⟩.w⟨yk⟩).P
wherew ̸∈ FV(P)

x(z1, . . . , zk).P ≜ x(w).w(z1).w⟨zk⟩.P

Using this (adequate) encoding, we will freely use polyadic
sends and receives in examples.

(⃗x⟨⃗y⟩.P1 + M1) | (⃗x(⃗z).P2 + M2) → P1 | P2{⃗y/⃗z}
R-POLYREACT

We’ll use the notation x.P and x.P for 0-ary sends and receives.
10

Encoding Recursive Definitions

Idea: Suppose we want to support recursive definitions.

We’ll write A(⃗x) ≜ PA for the definition of A, and A⟨⃗y⟩ for an
instantiation of Awith y⃗.

• Pick a fresh name a to stand for A.
• Let (|Q|) stand for Qwith occurrences of A⟨⃗z⟩ replaced by a⟨⃗z⟩.
• Produce νa. ((|PA|) | !a(⃗x).(|PA|))

11

Example: Encoding Booleans

Idea: encode a boolean value b as a process that receives two
channels t and f on the channel lwhere the boolean is “located”
and then signals on the corresponding channel

True(l) ≜ l(t, f).̄t

False(l) ≜ l(t, f).̄f
Cond(P,Q)(l) ≜ νt, f. (̄l⟨t, f⟩.(t.P+ f.Q))

12

Example: Encoding Booleans

Idea: encode a boolean value b as a process that receives two
channels t and f on the channel lwhere the boolean is “located”
and then signals on the corresponding channel

True(l) ≜ l(t, f).̄t
False(l) ≜ l(t, f).̄f

Cond(P,Q)(l) ≜ νt, f. (̄l⟨t, f⟩.(t.P+ f.Q))

12

Example: Encoding Booleans

Idea: encode a boolean value b as a process that receives two
channels t and f on the channel lwhere the boolean is “located”
and then signals on the corresponding channel

True(l) ≜ l(t, f).̄t
False(l) ≜ l(t, f).̄f

Cond(P,Q)(l) ≜ νt, f. (̄l⟨t, f⟩.(t.P+ f.Q))

12

Example: Encoding Naturals

Idea: encode a natural number value n as a process that receives
two channels s and z on the channel cwhere the number is
“located” and then signals on s n times terminated by z

Zero(c) ≜ c(s, z).z̄
Succ(n)(c) ≜ c(s, z). s̄. n̄⟨s, z⟩

13

Example: Encoding Naturals

Idea: encode a natural number value n as a process that receives
two channels s and z on the channel cwhere the number is
“located” and then signals on s n times terminated by z

Zero(c) ≜ c(s, z).z̄

Succ(n)(c) ≜ c(s, z). s̄. n̄⟨s, z⟩

13

Example: Encoding Naturals

Idea: encode a natural number value n as a process that receives
two channels s and z on the channel cwhere the number is
“located” and then signals on s n times terminated by z

Zero(c) ≜ c(s, z).z̄
Succ(n)(c) ≜ c(s, z). s̄. n̄⟨s, z⟩

13

Encoding Lists

Idea: encode a list l as a process that receives two channels c
and n on the channel lwhere the list is “located” and then
signals on cwith each value of the list, terminated by n

Nil(l) ≜ l(n, c).n̄
Cons(H, T)(l) ≜ νh, t. (l(n, c).c̄⟨h, t⟩ | H⟨h⟩ | T⟨t⟩)

IsNil(L)(r) ≜ νl, n, c. (L⟨l⟩ | l̄⟨n, c⟩.(n.True⟨r⟩+ c(h, t).False⟨r⟩))

14

Encoding Lists

Idea: encode a list l as a process that receives two channels c
and n on the channel lwhere the list is “located” and then
signals on cwith each value of the list, terminated by n

Nil(l) ≜ l(n, c).n̄

Cons(H, T)(l) ≜ νh, t. (l(n, c).c̄⟨h, t⟩ | H⟨h⟩ | T⟨t⟩)
IsNil(L)(r) ≜ νl, n, c. (L⟨l⟩ | l̄⟨n, c⟩.(n.True⟨r⟩+ c(h, t).False⟨r⟩))

14

Encoding Lists

Idea: encode a list l as a process that receives two channels c
and n on the channel lwhere the list is “located” and then
signals on cwith each value of the list, terminated by n

Nil(l) ≜ l(n, c).n̄
Cons(H, T)(l) ≜ νh, t. (l(n, c).c̄⟨h, t⟩ | H⟨h⟩ | T⟨t⟩)

IsNil(L)(r) ≜ νl, n, c. (L⟨l⟩ | l̄⟨n, c⟩.(n.True⟨r⟩+ c(h, t).False⟨r⟩))

14

Encoding Lists

Idea: encode a list l as a process that receives two channels c
and n on the channel lwhere the list is “located” and then
signals on cwith each value of the list, terminated by n

Nil(l) ≜ l(n, c).n̄
Cons(H, T)(l) ≜ νh, t. (l(n, c).c̄⟨h, t⟩ | H⟨h⟩ | T⟨t⟩)

IsNil(L)(r) ≜ νl, n, c. (L⟨l⟩ | l̄⟨n, c⟩.(n.True⟨r⟩+ c(h, t).False⟨r⟩))

14

Pattern Matching

We can encode pattern matching on lists

case l of
Nil? ⇒ P
Cons?(h, t) ⇒ Q

Idea: send fresh channels n and c to l and test which it signals on:

νn, c. l̄⟨n, c⟩ n.P+ c(h, t).Q

15

Pattern Matching

We can encode pattern matching on lists

case l of
Nil? ⇒ P
Cons?(h, t) ⇒ Q

Idea: send fresh channels n and c to l and test which it signals on:

νn, c. l̄⟨n, c⟩ n.P+ c(h, t).Q

15

Pattern Matching

We can encode pattern matching on lists

case l of
Nil? ⇒ P
Cons?(h, t) ⇒ Q

Idea: send fresh channels n and c to l and test which it signals on:

νn, c. l̄⟨n, c⟩ n.P+ c(h, t).Q

15

Destructive Operations

Copy⟨l,m⟩ ≜ case l of
Nil? ⇒ Nil⟨m⟩
Cons?(h, t) ⇒ νt′. (m(n, c).c̄⟨h, t′⟩ | Copy⟨t, t′⟩)

Join⟨k, l,m⟩ ≜ case k of
Nil? ⇒ Copy⟨l,m⟩
Cons?(h, t) ⇒ νt′. (m(n, c).c̄⟨h, t′⟩ | Join⟨t, l, t′⟩)

16

Destructive Operations

Copy⟨l,m⟩ ≜ case l of
Nil? ⇒ Nil⟨m⟩
Cons?(h, t) ⇒ νt′. (m(n, c).c̄⟨h, t′⟩ | Copy⟨t, t′⟩)

Join⟨k, l,m⟩ ≜ case k of
Nil? ⇒ Copy⟨l,m⟩
Cons?(h, t) ⇒ νt′. (m(n, c).c̄⟨h, t′⟩ | Join⟨t, l, t′⟩)

16

Encoding Persistent Datatypes

We can put a ! in front of processes to turn them into servers
create arbitrary numbers of the original process

Nil(l) ≜ !l(n, c).n̄
Cons(H, T)(l) ≜ νh, t. (!l(n, c).c̄⟨h, t⟩ | H⟨h⟩ | T⟨t⟩)

This causes the list to still exist after sending or receiving a
message

17

Encoding λ-calculus

[[x]](u) ≜ x̄⟨u⟩
[[λx. e]](u) ≜ u(x, y).[[e]](y)
[[e1 e2]](u) ≜ νy. ([[e1]](y) | νx. (ȳ⟨x, u⟩ | !x(w).[[e2]](w)))

18

Bisimulation

When are two processes equal?

One the most important contributions of research on π calculus
has been the development of the notion of bisimulation:

P

Q

R S

a

b c

P’

Q’ Q”

R’ S’

a a

b c

19

Bisimulation

When are two processes equal?

One the most important contributions of research on π calculus
has been the development of the notion of bisimulation:

P

Q

R S

a

b c

P’

Q’ Q”

R’ S’

a a

b c

19

	Encoding Persistent Datatypes

