Lecture 28
Existential Types
Namespaces

It’s no fun to program in a language with a single, global namespace: C, FORTRAN, and PHP until depressingly recently.
Namespaces

It’s no fun to program in a language with a single, global namespace: C, FORTRAN, and PHP until depressingly recently.

Components of a large program have to worry about name collisions.

And components become tightly coupled: any component can use a name defined by any other.
Modularity

A module is a collection of named entities that are related.

Modules provide separate namespaces: different modules can use the same names without worrying about collisions.

Modules can:
- Choose which names to export
- Choose which names to keep hidden
- Hide implementation details
Existential Types

In the polymorphic λ-calculus, we introduced \textit{universal} quantification for types.

$$\tau ::= \cdots \mid X \mid \forall X. \tau$$
Existential Types

In the polymorphic λ-calculus, we introduced *universal* quantification for types.

\[\tau ::= \cdots \mid X \mid \forall X. \tau \]

If we have \forall, why not \exists? What would *existential* type quantification do?

\[\tau ::= \cdots \mid X \mid \exists X. \tau \]
Existential Types

Together with records, existential types let us *hide* the implementation details of an interface.
Existential Types

Together with records, existential types let us *hide* the implementation details of an interface.

$$\exists \text{Counter.}$$

\{ new : \text{Counter},
get : \text{Counter} \rightarrow \text{int},
inc : \text{Counter} \rightarrow \text{Counter} \}$$
Existential Types

Together with records, existential types let us *hide* the implementation details of an interface.

\[\exists \text{Counter}. \]

\[\{ \text{new: Counter,} \]

\[\text{get: Counter } \rightarrow \text{int,} \]

\[\text{inc: Counter } \rightarrow \text{Counter} \} \]

Here, the *witness type* might be *int*:

\[\{ \text{new: int,} \]

\[\text{get: int } \rightarrow \text{int,} \]

\[\text{inc: int } \rightarrow \text{int} \} \]
Existential Types

Let’s extend our STLC with existential types:

\[\tau ::= \text{int} \]

\[
| \tau_1 \rightarrow \tau_2 \\
| \{ l_1 : \tau_1, \ldots, l_n : \tau_n \} \\
| \exists X. \tau \\
| X
\]
We’ll tag the values of existential types with the witness type.
We’ll tag the values of existential types with the witness type.

A value has type $\exists X. \tau$ is a pair $\{\tau', v\}$ where v has type $\tau\{\tau'/X\}$.
We’ll tag the values of existential types with the witness type.

A value has type $\exists X. \tau$ is a pair $\{\tau', \nu\}$ where ν has type $\tau\{\tau'/X\}$.

We’ll add new operations to construct and destruct these pairs:

$$\text{pack } \{\tau_1, e\} \text{ as } \exists X. \tau_2$$

$$\text{unpack } \{X, x\} = e_1 \text{ in } e_2$$
Syntax

\[e ::= x \]
\[\quad | \quad \lambda x : \tau.\ e \]
\[\quad | \quad e_1 \ e_2 \]
\[\quad | \quad n \]
\[\quad | \quad e_1 + e_2 \]
\[\quad | \quad \{ l_1 = e_1, \ldots, l_n = e_n \} \]
\[\quad | \quad e.l \]
\[\quad | \quad \text{pack } \{ \tau_1, e \} \text{ as } \exists X. \tau_2 \]
\[\quad | \quad \text{unpack } \{ X, x \} = e_1 \text{ in } e_2 \]

\[v ::= n \]
\[\quad | \quad \lambda x : \tau.\ e \]
\[\quad | \quad \{ l_1 = v_1, \ldots, l_n = v_n \} \]
\[\quad | \quad \text{pack } \{ \tau_1, v \} \text{ as } \exists X. \tau_2 \]
Dynamic Semantics

\[E ::= \ldots \]

| pack \(\{\tau_1, E\} \) as \(\exists X. \tau_2 \) |
| unpack \(\{X, x\} = E \) in \(e \) |

\[
\text{unpack } \{X, x\} = (\text{pack } \{\tau_1, v\} \text{ as } \exists Y. \tau_2) \text{ in } e \rightarrow e\{v/x\}\{\tau_1/X\}
\]
Static Semantics

\[\Delta, \Gamma \vdash e : \tau_2\{\tau_1/X\} \]

\[\Delta, \Gamma \vdash \text{pack} \{\tau_1, e\} \text{ as } \exists X. \tau_2 : \exists X. \tau_2 \]
The side condition $\Delta \vdash \tau_2 \text{ ok}$ ensures that the existentially quantified type variable X does not appear free in τ_2.
let counterADT =
 pack { int,
 { new = 0,
 get = \i:int. i,
 inc = \i:int. i + 1 } }
 as
 \exists Counter.
 { new : Counter,
 get : Counter \rightarrow int,
 inc : Counter \rightarrow Counter }
 in . . .
Here’s how to use the existential value `counterADT`:

```plaintext
unpack \{ T, c \} = counterADT in
let y = c.new in
    c.get (c.inc (c.inc y))
```
We can define alternate, equivalent implementations of our counter...

```haskell
let counterADT =
  pack {{x: int},
    { new = {x = 0},
      get = λr:{x: int}. r.x,
      inc = λr:{x: int}. r.x + 1 } }
  as
    ∃Counter.
      { new : Counter,
        get : Counter → int,
        inc : Counter → Counter }

in . . .
```
Existentials and Type Variables

In the typing rule for unpack, the side condition $\Delta \vdash \tau_2 \text{ ok}$ prevents type variables from “leaking out” of unpack expressions.
Existentials and Type Variables

In the typing rule for unpack, the side condition $\Delta \vdash \tau_2 \text{ok}$ prevents type variables from “leaking out” of unpack expressions.

This rules out programs like this:

```
let m =
    pack {\text{int}, \{a = 5, f = \lambda x: \text{int}. x + 1\}} as \exists X. \{a:X, f:X \rightarrow X\}
in
unpack \{T, x\} = m in x.f x.a
```

where the type of $x.f x.a$ is just T.
Encoding Existentials

We can encode existentials using universals!

The idea is to use a Church encoding where an existential value is a function that takes a type and then calls a continuation.
Encoding Existentials

We can encode existentials using universals!

The idea is to use a Church encoding where an existential value is a function that takes a type and then calls a continuation.

\[
\exists X. \tau \triangleq \forall Y. (\forall X. \tau \rightarrow Y) \rightarrow Y
\]

\[
\text{pack } \{\tau_1, e\} \text{ as } \exists X. \tau_2 \triangleq \Lambda Y. \lambda f : (\forall X. \tau_2 \rightarrow Y). f [\tau_1] e
\]

\[
\text{unpack } \{X, x\} = e_1 \text{ in } e_2 \triangleq e_1 [\tau_2] (\Lambda X. \lambda x : \tau_1. e_2)
\]

where \(e_1\) has type \(\exists X. \tau_1\) and \(e_2\) has type \(\tau_2\)