CS 4110

Programming Languages & Logics

Lecture 28 Existential Types

It's no fun to program in a language with a single, global namespace: C, FORTRAN, and PHP until depressingly recently.

It's no fun to program in a language with a single, global namespace: C, FORTRAN, and PHP until depressingly recently.

Components of a large program have to worry about name collisions.

And components become tightly coupled: any component can use a name defined by any other.

A module is a collection of named entities that are related.

Modules provide separate namespaces: different modules can use the same names without worrying about collisions.

Modules can:

- Choose which names to export
- Choose which names to keep hidden
- Hide implementation details

Existential Types

In the polymorphic λ -calculus, we introduced *universal* quantification for types.

 $\tau ::= \cdots \mid X \mid \forall X. \tau$

In the polymorphic λ -calculus, we introduced *universal* quantification for types.

$$\tau ::= \cdots \mid X \mid \forall X. \tau$$

If we have \forall , why not \exists ? What would *existential* type quantification do?

$$\tau ::= \cdots \mid X \mid \exists X. \tau$$

Existential Types

Together with records, existential types let us *hide* the implementation details of an interface.

Together with records, existential types let us *hide* the implementation details of an interface.

 \exists Counter.

- $\{ new : Counter, \}$
 - get : Counter \rightarrow int,
 - inc : Counter \rightarrow Counter }

Together with records, existential types let us *hide* the implementation details of an interface.

 $\begin{array}{l} \exists \ \textbf{Counter}.\\ \{ \ new: \ \textbf{Counter},\\ get: \ \textbf{Counter} \rightarrow \ \textbf{int},\\ inc: \ \textbf{Counter} \rightarrow \ \textbf{Counter} \ \} \end{array}$

Here, the witness type might be int:

 $\{ \begin{array}{l} \mathsf{new}: \mathsf{int}, \\ \mathsf{get}: \mathsf{int} \to \mathsf{int}, \\ \mathsf{inc}: \mathsf{int} \to \mathsf{int} \end{array} \}$

Existential Types

Let's extend our STLC with existential types:

```
\tau ::= \mathbf{int}
| \tau_1 \to \tau_2
| \{ l_1 : \tau_1, \dots, l_n : \tau_n \}
| \exists X. \tau
| X
```

Syntax & Dynamic Semantics

We'll tag the values of existential types with the witness type.

Syntax & Dynamic Semantics

We'll tag the values of existential types with the witness type.

```
A value has type \exists X. \tau is a pair \{\tau', v\}
where v has type \tau\{\tau'/X\}.
```

Syntax & Dynamic Semantics

We'll tag the values of existential types with the witness type.

```
A value has type \exists X. \tau is a pair \{\tau', v\}
where v has type \tau\{\tau'/X\}.
```

We'll add new operations to construct and destruct these pairs:

pack $\{\tau_1, e\}$ as $\exists X. \tau_2$ unpack $\{X, x\} = e_1$ in e_2 Syntax

e ::= x $|\lambda x:\tau.e$ $|e_1 e_2|$ n $|e_1 + e_2|$ $| \{ l_1 = e_1, \ldots, l_n = e_n \}$ |e.l|| pack { τ_1 , e} as $\exists X. \tau_2$ | unpack $\{X, x\} = e_1$ in e_2 v ::= n $|\lambda x:\tau.e|$ $| \{ l_1 = v_1, \ldots, l_n = v_n \}$ | pack { τ_1 , v} as $\exists X. \tau_2$

Dynamic Semantics

$$E ::= \dots$$

| pack { τ_1, E } as $\exists X. \tau_2$
| unpack { X, X } = E in e

unpack $\{X, x\} = (\text{pack } \{\tau_1, v\} \text{ as } \exists Y. \tau_2) \text{ in } e \to e\{v/x\} \overline{\{\tau_1/X\}}$

Static Semantics

$\frac{\Delta, \Gamma \vdash e : \tau_2 \{\tau_1 / X\}}{\Delta, \Gamma \vdash \mathsf{pack} \{\tau_1, e\} \text{ as } \exists X. \tau_2 : \exists X. \tau_2}$

Static Semantics

$$\frac{\Delta, \Gamma \vdash e : \tau_2 \{\tau_1 / X\}}{\Delta, \Gamma \vdash \mathsf{pack} \{\tau_1, e\} \text{ as } \exists X. \tau_2 : \exists X. \tau_2}$$

$$\frac{\Delta, \Gamma \vdash e_1 : \exists X. \tau_1 \quad \Delta \cup \{X\}, \Gamma, x : \tau_1 \vdash e_2 : \tau_2 \quad \Delta \vdash \tau_2 \text{ ok}}{\Delta, \Gamma \vdash \text{unpack } \{X, x\} = e_1 \text{ in } e_2 : \tau_2}$$

The side condition $\Delta \vdash \tau_2$ ok ensures that the existentially quantified type variable *X* does not appear free in τ_2 .

Example

```
let counterADT =
  pack { int,
            \{ new = 0, \}
              get = \lambda i: int. i,
              inc = \lambda i: int. i + 1 }
  as
     ∃ Counter.
             { new : Counter,
               get : Counter \rightarrow int,
               inc : Counter \rightarrow Counter}
in . . .
```

Example

Here's how to use the existential value counterADT:

```
unpack \{T, c\} = counterADT in
let y = c.new in
c.get (c.inc (c.inc y))
```

Representation Independence

We can define alternate, equivalent implementations of our counter...

```
let counterADT =
   pack {{x:int},
            \{ new = \{ x = 0 \},\
              get = \lambda r: \{x: int\}, r.x,
              inc = \lambda r: \{x: int\}, r.x + 1\}
   as
      Counter
             { new : Counter,
               get : Counter \rightarrow int,
               inc : Counter \rightarrow Counter}
in . . .
```

Existentials and Type Variables

In the typing rule for unpack, the side condition $\Delta \vdash \tau_2$ ok prevents type variables from "leaking out" of unpack expressions.

In the typing rule for unpack, the side condition $\Delta \vdash \tau_2$ ok prevents type variables from "leaking out" of unpack expressions.

This rules out programs like this:

let m =pack {int, { $a = 5, f = \lambda x$: int. x + 1} as $\exists X. {a:X, f:X \rightarrow X}$ in unpack {T, x} = m in x.fx.a

where the type of *x*.*f x*.*a* is just *T*.

We can encode existentials using universals!

The idea is to use a Church encoding where an existential value is a function that takes a type and then calls a continuation.

ι

We can encode existentials using universals!

The idea is to use a Church encoding where an existential value is a function that takes a type and then calls a continuation.

$$\exists X. \tau \triangleq \forall Y. (\forall X. \tau \to Y) \to Y$$
pack $\{\tau_1, e\}$ as $\exists X. \tau_2 \triangleq \Lambda Y. \lambda f: (\forall X. \tau_2 \to Y). f[\tau_1] e$
inpack $\{X, x\} = e_1$ in $e_2 \triangleq e_1[\tau_2] (\Lambda X.\lambda x: \tau_1. e_2)$
where e_1 has type $\exists X. \tau_1$ and e_2 has type τ_2