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Existential Types



Namespaces

It’s no fun to program in a language with a single, global
namespace: C, FORTRAN, and PHP until depressingly recently.

Components of a large program have to worry about name
collisions.

And components become tightly coupled: any component can
use a name defined by any other.
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Modularity

Amodule is a collection of named entities that are related.

Modules provide separate namespaces: different modules can
use the same names without worrying about collisions.

Modules can:
• Choose which names to export
• Choose which names to keep hidden
• Hide implementation details
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Existential Types

In the polymorphic λ-calculus, we introduced universal
quantification for types.

τ ::= · · · | X | ∀X. τ

If we have ∀, why not ∃? What would existential type
quantification do?

τ ::= · · · | X | ∃X. τ
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Existential Types

Together with records, existential types let us hide the
implementation details of an interface.

∃ Counter.
{ new : Counter,
get : Counter → int,
inc : Counter → Counter }

Here, thewitness typemight be int:

{ new : int,
get : int → int,
inc : int → int }
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Existential Types

Let’s extend our STLC with existential types:

τ ::= int
| τ1 → τ2

| { l1 :τ1, . . . , ln :τn }
| ∃X. τ
| X
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Syntax & Dynamic Semantics

We’ll tag the values of existential types with the witness type.

A value has type ∃ X. τ is a pair {τ ′, v}
where v has type τ{τ ′/X}.

We’ll add new operations to construct and destruct these pairs:

pack {τ1, e} as ∃ X. τ2

unpack {X, x} = e1 in e2
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Syntax

e ::= x
| λx :τ. e
| e1 e2
| n
| e1 + e2
| { l1 = e1, . . . , ln = en }
| e.l
| pack {τ1, e} as ∃X. τ2
| unpack {X, x} = e1 in e2

v ::= n
| λx :τ. e
| { l1 = v1, . . . , ln = vn }
| pack {τ1, v} as ∃X. τ2
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Dynamic Semantics

E ::= . . .

| pack {τ1, E} as ∃ X. τ2
| unpack {X, x} = E in e

unpack {X, x} = (pack {τ1, v} as ∃ Y. τ2) in e → e{v/x}{τ1/X}
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Static Semantics

∆, Γ ⊢ e :τ2{τ1/X}
∆, Γ ⊢ pack {τ1, e} as ∃ X. τ2 :∃ X. τ2

∆, Γ ⊢ e1 :∃ X. τ1 ∆ ∪ {X}, Γ, x :τ1 ⊢ e2 :τ2 ∆ ⊢ τ2 ok
∆, Γ ⊢ unpack {X, x} = e1 in e2 :τ2

The side condition∆ ⊢ τ2 ok ensures that the existentially
quantified type variable X does not appear free in τ2.
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Example

let counterADT =
pack { int,

{ new = 0,
get = λi : int. i,
inc = λi : int. i+ 1 } }

as
∃ Counter.

{ new : Counter,
get : Counter → int,
inc : Counter → Counter}

in . . .
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Example

Here’s how to use the existential value counterADT:

unpack {T, c} = counterADT in
let y = c.new in
c.get (c.inc (c.inc y))
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Representation Independence

We can define alternate, equivalent implementations of our
counter...

let counterADT =
pack {{x : int},

{ new = {x = 0},
get = λr :{x : int}. r.x,
inc = λr :{x : int}. r.x+ 1 } }

as
∃Counter.

{ new : Counter,
get : Counter → int,
inc : Counter → Counter}

in . . .
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Existentials and Type Variables

In the typing rule for unpack, the side condition∆ ⊢ τ2 ok
prevents type variables from “leaking out” of unpack
expressions.

This rules out programs like this:

letm =
pack {int, {a = 5, f = λx : int. x+ 1}} as ∃ X. {a :X, f :X → X}

in
unpack {T, x} = m in x.f x.a

where the type of x.f x.a is just T.
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Encoding Existentials

We can encode existentials using universals!

The idea is to use a Church encoding where an existential value
is a function that takes a type and then calls a continuation.

∃X. τ ≜ ∀Y. (∀X. τ → Y) → Y

pack {τ1, e} as ∃X. τ2 ≜ ΛY. λf : (∀X.τ2 → Y). f [τ1] e

unpack {X, x} = e1 in e2 ≜ e1 [τ2] (ΛX.λx : τ1. e2)

where e1 has type ∃X.τ1 and e2 has type τ2
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