

CS 4110

Programming Languages & Logics

Lecture 22
Parametric Polymorphism

Roadmap

We’ve extended a simple type system for the λ-calculus with
support for a few interesting language constructs. But the
“power” of the underlying type system has remainedmore or
less the same.

Today, we’ll develop a far more fundamental change to the
simply-typed λ-calculus: parametric polymorphism, the concept
at the heart of OCaml’s type system and underlying generics in
Java and similar languages.

2

Polymorphism

Polymorphism generally falls into one of three broad varieties.

• Subtype polymorphism allows values of type τ to masquerade
as values of type τ ′, provided that τ is a subtype of τ ′.

• Ad-hoc polymorphism, also called overloading, allows the
same function name to be used with functions that take
different types of parameters.

• Parametric polymorphism refers to code that is written
without knowledge of the actual type of the arguments; the
code is parametric in the type of the parameters.

3

Polymorphism

Polymorphism generally falls into one of three broad varieties.

• Subtype polymorphism allows values of type τ to masquerade
as values of type τ ′, provided that τ is a subtype of τ ′.

• Ad-hoc polymorphism, also called overloading, allows the
same function name to be used with functions that take
different types of parameters.

• Parametric polymorphism refers to code that is written
without knowledge of the actual type of the arguments; the
code is parametric in the type of the parameters.

3

Polymorphism

Polymorphism generally falls into one of three broad varieties.

• Subtype polymorphism allows values of type τ to masquerade
as values of type τ ′, provided that τ is a subtype of τ ′.

• Ad-hoc polymorphism, also called overloading, allows the
same function name to be used with functions that take
different types of parameters.

• Parametric polymorphism refers to code that is written
without knowledge of the actual type of the arguments; the
code is parametric in the type of the parameters.

3

Polymorphism

Polymorphism generally falls into one of three broad varieties.

• Subtype polymorphism allows values of type τ to masquerade
as values of type τ ′, provided that τ is a subtype of τ ′.

• Ad-hoc polymorphism, also called overloading, allows the
same function name to be used with functions that take
different types of parameters.

• Parametric polymorphism refers to code that is written
without knowledge of the actual type of the arguments; the
code is parametric in the type of the parameters.

3

Example

Consider a “doubling” function that takes a function f, and an
integer x, applies f to x, and then applies f to the result:

doubleInt ≜ λf : int → int. λx : int. f (f x)

Now suppose we want the same function for Booleans, or
functions...

doubleBool ≜ λf :bool → bool. λx :bool. f (f x)
doubleFn ≜ λf : (int → int) → (int → int). λx : int → int. f (f x)

...

4

Example

Consider a “doubling” function that takes a function f, and an
integer x, applies f to x, and then applies f to the result:

doubleInt ≜ λf : int → int. λx : int. f (f x)

Now suppose we want the same function for Booleans, or
functions...

doubleBool ≜ λf :bool → bool. λx :bool. f (f x)
doubleFn ≜ λf : (int → int) → (int → int). λx : int → int. f (f x)

...

4

Example

Consider a “doubling” function that takes a function f, and an
integer x, applies f to x, and then applies f to the result:

doubleInt ≜ λf : int → int. λx : int. f (f x)

Now suppose we want the same function for Booleans, or
functions...

doubleBool ≜ λf :bool → bool. λx :bool. f (f x)
doubleFn ≜ λf : (int → int) → (int → int). λx : int → int. f (f x)

...

4

Abstraction

These examples on the preceding slides violate a fundamental
principle of software engineering:

Definition (Abstraction Principle)
Every major piece of functionality in a program should be
implemented in just one place in the code. When similar
functionality is provided by distinct pieces of code, the two
should be combined into one by abstracting out the varying
parts.

In the doubling functions, the varying parts are the types.

We need a way to abstract out the type of the doubling
operation, and later instantiate it with different concrete types.

5

Abstraction

These examples on the preceding slides violate a fundamental
principle of software engineering:

Definition (Abstraction Principle)
Every major piece of functionality in a program should be
implemented in just one place in the code. When similar
functionality is provided by distinct pieces of code, the two
should be combined into one by abstracting out the varying
parts.

In the doubling functions, the varying parts are the types.

We need a way to abstract out the type of the doubling
operation, and later instantiate it with different concrete types.

5

Abstraction

These examples on the preceding slides violate a fundamental
principle of software engineering:

Definition (Abstraction Principle)
Every major piece of functionality in a program should be
implemented in just one place in the code. When similar
functionality is provided by distinct pieces of code, the two
should be combined into one by abstracting out the varying
parts.

In the doubling functions, the varying parts are the types.

We need a way to abstract out the type of the doubling
operation, and later instantiate it with different concrete types.

5

Abstraction

These examples on the preceding slides violate a fundamental
principle of software engineering:

Definition (Abstraction Principle)
Every major piece of functionality in a program should be
implemented in just one place in the code. When similar
functionality is provided by distinct pieces of code, the two
should be combined into one by abstracting out the varying
parts.

In the doubling functions, the varying parts are the types.

We need a way to abstract out the type of the doubling
operation, and later instantiate it with different concrete types.

5

Polymorphic λ-Calculus

Invented independently in 1972–1974 by a computer scientist
John Reynolds and a logician Jean-Yves Girard (who called it
System F).

Key feature: Function abstraction and application, just like in
λ-calculus terms, but at the type level!

Notation:
• ΛX. e: type abstraction
• e[τ]: type application

Example:
ΛX. λx :X. x

6

Polymorphic λ-Calculus

Syntax

e ::= n | x | λx :τ. e | e1 e2

| ΛX. e

| e [τ]

v ::= n | λx :τ. e

| ΛX. e

Dynamic Semantics

E ::= [·] | E e | v E | E [τ]

e → e′

E[e] → E[e′] (λx :τ. e) v → e{v/x} (ΛX. e) [τ] → e{τ/X}

7

Polymorphic λ-Calculus

Syntax

e ::= n | x | λx :τ. e | e1 e2 | ΛX. e

| e [τ]

v ::= n | λx :τ. e

| ΛX. e

Dynamic Semantics

E ::= [·] | E e | v E | E [τ]

e → e′

E[e] → E[e′] (λx :τ. e) v → e{v/x} (ΛX. e) [τ] → e{τ/X}

7

Polymorphic λ-Calculus

Syntax

e ::= n | x | λx :τ. e | e1 e2 | ΛX. e | e [τ]
v ::= n | λx :τ. e

| ΛX. e

Dynamic Semantics

E ::= [·] | E e | v E | E [τ]

e → e′

E[e] → E[e′] (λx :τ. e) v → e{v/x} (ΛX. e) [τ] → e{τ/X}

7

Polymorphic λ-Calculus

Syntax

e ::= n | x | λx :τ. e | e1 e2 | ΛX. e | e [τ]
v ::= n | λx :τ. e | ΛX. e

Dynamic Semantics

E ::= [·] | E e | v E | E [τ]

e → e′

E[e] → E[e′] (λx :τ. e) v → e{v/x} (ΛX. e) [τ] → e{τ/X}

7

Polymorphic λ-Calculus

Syntax

e ::= n | x | λx :τ. e | e1 e2 | ΛX. e | e [τ]
v ::= n | λx :τ. e | ΛX. e

Dynamic Semantics

E ::= [·] | E e | v E | E [τ]

e → e′

E[e] → E[e′] (λx :τ. e) v → e{v/x} (ΛX. e) [τ] → e{τ/X}

7

Polymorphic λ-Calculus

Syntax

e ::= n | x | λx :τ. e | e1 e2 | ΛX. e | e [τ]
v ::= n | λx :τ. e | ΛX. e

Dynamic Semantics

E ::= [·] | E e | v E | E [τ]

e → e′

E[e] → E[e′] (λx :τ. e) v → e{v/x}

(ΛX. e) [τ] → e{τ/X}

7

Polymorphic λ-Calculus

Syntax

e ::= n | x | λx :τ. e | e1 e2 | ΛX. e | e [τ]
v ::= n | λx :τ. e | ΛX. e

Dynamic Semantics

E ::= [·] | E e | v E | E [τ]

e → e′

E[e] → E[e′] (λx :τ. e) v → e{v/x} (ΛX. e) [τ] → e{τ/X}

7

Typing Judgment

Type Syntax

τ ::= int | τ1 → τ2

| X | ∀X. τ

Typing Judgment: ∆, Γ ⊢ e :τ
• Γ a mapping from variables to types
• ∆ a set of types in scope
• e an expression
• τ a type
Type Well-Formedness: ∆ ⊢ τ ok
• ∆ a set of types in scope
• τ a type

8

Typing Judgment

Type Syntax

τ ::= int | τ1 → τ2 | X

| ∀X. τ

Typing Judgment: ∆, Γ ⊢ e :τ
• Γ a mapping from variables to types
• ∆ a set of types in scope
• e an expression
• τ a type
Type Well-Formedness: ∆ ⊢ τ ok
• ∆ a set of types in scope
• τ a type

8

Typing Judgment

Type Syntax

τ ::= int | τ1 → τ2 | X | ∀X. τ

Typing Judgment: ∆, Γ ⊢ e :τ
• Γ a mapping from variables to types
• ∆ a set of types in scope
• e an expression
• τ a type
Type Well-Formedness: ∆ ⊢ τ ok
• ∆ a set of types in scope
• τ a type

8

Typing Judgment

Type Syntax

τ ::= int | τ1 → τ2 | X | ∀X. τ

Typing Judgment: ∆, Γ ⊢ e :τ
• Γ a mapping from variables to types
• ∆ a set of types in scope
• e an expression
• τ a type

Type Well-Formedness: ∆ ⊢ τ ok
• ∆ a set of types in scope
• τ a type

8

Typing Judgment

Type Syntax

τ ::= int | τ1 → τ2 | X | ∀X. τ

Typing Judgment: ∆, Γ ⊢ e :τ
• Γ a mapping from variables to types
• ∆ a set of types in scope
• e an expression
• τ a type
Type Well-Formedness: ∆ ⊢ τ ok
• ∆ a set of types in scope
• τ a type

8

Typing Rules

∆, Γ ⊢ n : int

Γ(x) = τ

∆, Γ ⊢ x :τ

∆, Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ λx :τ. e :τ → τ ′

∆, Γ ⊢ e1 :τ → τ ′ ∆, Γ ⊢ e2 :τ
∆, Γ ⊢ e1 e2 :τ ′

∆ ∪ {X}, Γ ⊢ e :τ
∆, Γ ⊢ ΛX. e :∀X. τ

∆, Γ ⊢ e :∀X. τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ e [τ] :τ ′{τ/X}

9

Typing Rules

∆, Γ ⊢ n : int
Γ(x) = τ

∆, Γ ⊢ x :τ

∆, Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ λx :τ. e :τ → τ ′

∆, Γ ⊢ e1 :τ → τ ′ ∆, Γ ⊢ e2 :τ
∆, Γ ⊢ e1 e2 :τ ′

∆ ∪ {X}, Γ ⊢ e :τ
∆, Γ ⊢ ΛX. e :∀X. τ

∆, Γ ⊢ e :∀X. τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ e [τ] :τ ′{τ/X}

9

Typing Rules

∆, Γ ⊢ n : int
Γ(x) = τ

∆, Γ ⊢ x :τ

∆, Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ λx :τ. e :τ → τ ′

∆, Γ ⊢ e1 :τ → τ ′ ∆, Γ ⊢ e2 :τ
∆, Γ ⊢ e1 e2 :τ ′

∆ ∪ {X}, Γ ⊢ e :τ
∆, Γ ⊢ ΛX. e :∀X. τ

∆, Γ ⊢ e :∀X. τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ e [τ] :τ ′{τ/X}

9

Typing Rules

∆, Γ ⊢ n : int
Γ(x) = τ

∆, Γ ⊢ x :τ

∆, Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ λx :τ. e :τ → τ ′

∆, Γ ⊢ e1 :τ → τ ′ ∆, Γ ⊢ e2 :τ
∆, Γ ⊢ e1 e2 :τ ′

∆ ∪ {X}, Γ ⊢ e :τ
∆, Γ ⊢ ΛX. e :∀X. τ

∆, Γ ⊢ e :∀X. τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ e [τ] :τ ′{τ/X}

9

Typing Rules

∆, Γ ⊢ n : int
Γ(x) = τ

∆, Γ ⊢ x :τ

∆, Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ λx :τ. e :τ → τ ′

∆, Γ ⊢ e1 :τ → τ ′ ∆, Γ ⊢ e2 :τ
∆, Γ ⊢ e1 e2 :τ ′

∆ ∪ {X}, Γ ⊢ e :τ
∆, Γ ⊢ ΛX. e :∀X. τ

∆, Γ ⊢ e :∀X. τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ e [τ] :τ ′{τ/X}

9

Typing Rules

∆, Γ ⊢ n : int
Γ(x) = τ

∆, Γ ⊢ x :τ

∆, Γ, x :τ ⊢ e :τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ λx :τ. e :τ → τ ′

∆, Γ ⊢ e1 :τ → τ ′ ∆, Γ ⊢ e2 :τ
∆, Γ ⊢ e1 e2 :τ ′

∆ ∪ {X}, Γ ⊢ e :τ
∆, Γ ⊢ ΛX. e :∀X. τ

∆, Γ ⊢ e :∀X. τ ′ ∆ ⊢ τ ok
∆, Γ ⊢ e [τ] :τ ′{τ/X}

9

Type Well-Formedness

X ∈ ∆

∆ ⊢ X ok

∆ ⊢ int ok

∆ ⊢ τ1 ok ∆ ⊢ τ2 ok
∆ ⊢ τ1 → τ2 ok

∆ ∪ {X} ⊢ τ ok
∆ ⊢ ∀X. τ ok

10

Type Well-Formedness

X ∈ ∆

∆ ⊢ X ok

∆ ⊢ int ok

∆ ⊢ τ1 ok ∆ ⊢ τ2 ok
∆ ⊢ τ1 → τ2 ok

∆ ∪ {X} ⊢ τ ok
∆ ⊢ ∀X. τ ok

10

Type Well-Formedness

X ∈ ∆

∆ ⊢ X ok

∆ ⊢ int ok

∆ ⊢ τ1 ok ∆ ⊢ τ2 ok
∆ ⊢ τ1 → τ2 ok

∆ ∪ {X} ⊢ τ ok
∆ ⊢ ∀X. τ ok

10

Type Well-Formedness

X ∈ ∆

∆ ⊢ X ok

∆ ⊢ int ok

∆ ⊢ τ1 ok ∆ ⊢ τ2 ok
∆ ⊢ τ1 → τ2 ok

∆ ∪ {X} ⊢ τ ok
∆ ⊢ ∀X. τ ok

10

Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as

double ≜ ΛX. λf :X → X. λx :X. f (f x).

The type of this expression is: ∀X. (X → X) → X → X

We can instantiate this on a type, and provide arguments:

double [int] (λn : int. n+ 1) 7
→ (λf : int → int. λx : int. f (f x)) (λn : int. n+ 1) 7
→∗ 9

11

Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as

double ≜ ΛX. λf :X → X. λx :X. f (f x).

The type of this expression is: ∀X. (X → X) → X → X

We can instantiate this on a type, and provide arguments:

double [int] (λn : int. n+ 1) 7
→ (λf : int → int. λx : int. f (f x)) (λn : int. n+ 1) 7
→∗ 9

11

Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as

double ≜ ΛX. λf :X → X. λx :X. f (f x).

The type of this expression is: ∀X. (X → X) → X → X

We can instantiate this on a type, and provide arguments:

double [int] (λn : int. n+ 1) 7
→ (λf : int → int. λx : int. f (f x)) (λn : int. n+ 1) 7
→∗ 9

11

Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as

double ≜ ΛX. λf :X → X. λx :X. f (f x).

The type of this expression is: ∀X. (X → X) → X → X

We can instantiate this on a type, and provide arguments:

double [int] (λn : int. n+ 1) 7
→ (λf : int → int. λx : int. f (f x)) (λn : int. n+ 1) 7
→∗ 9

11

Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as

double ≜ ΛX. λf :X → X. λx :X. f (f x).

The type of this expression is: ∀X. (X → X) → X → X

We can instantiate this on a type, and provide arguments:

double [int] (λn : int. n+ 1) 7

→ (λf : int → int. λx : int. f (f x)) (λn : int. n+ 1) 7
→∗ 9

11

Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as

double ≜ ΛX. λf :X → X. λx :X. f (f x).

The type of this expression is: ∀X. (X → X) → X → X

We can instantiate this on a type, and provide arguments:

double [int] (λn : int. n+ 1) 7
→ (λf : int → int. λx : int. f (f x)) (λn : int. n+ 1) 7

→∗ 9

11

Example: Doubling Redux

Let’s consider the doubling operation again.

We can write a polymorphic doubling operation as

double ≜ ΛX. λf :X → X. λx :X. f (f x).

The type of this expression is: ∀X. (X → X) → X → X

We can instantiate this on a type, and provide arguments:

double [int] (λn : int. n+ 1) 7
→ (λf : int → int. λx : int. f (f x)) (λn : int. n+ 1) 7
→∗ 9

11

Example: Self Application

Recall that in the simply-typed λ-calculus, we had no way of
typing the expression λx. x x.

In the polymorphic λ-calculus, however, we can type this
expression using a polymorphic type:

⊢ λx :∀X. X → X. x [∀X. X → X] x : (∀X. X → X) → (∀X. X → X)

(However, all expressions in polymorphic λ-calculus still halt.
There is no way to give a type to the self-application of this term.)

12

Example: Self Application

Recall that in the simply-typed λ-calculus, we had no way of
typing the expression λx. x x.

In the polymorphic λ-calculus, however, we can type this
expression using a polymorphic type:

⊢ λx :∀X. X → X. x [∀X. X → X] x : (∀X. X → X) → (∀X. X → X)

(However, all expressions in polymorphic λ-calculus still halt.
There is no way to give a type to the self-application of this term.)

12

Example: Self Application

Recall that in the simply-typed λ-calculus, we had no way of
typing the expression λx. x x.

In the polymorphic λ-calculus, however, we can type this
expression using a polymorphic type:

⊢ λx :∀X. X → X. x [∀X. X → X] x : (∀X. X → X) → (∀X. X → X)

(However, all expressions in polymorphic λ-calculus still halt.
There is no way to give a type to the self-application of this term.)

12

Example: Products

We can encode products in polymorphic λ-calculus without
adding any additional types!

The encodings are based on the (untyped) Church encodings:

τ1 × τ2 ≜ ∀R. (τ1 → τ2 → R) → R

(·, ·)≜ ΛT1.ΛT2. λv1 : T1 λv2 : T2.ΛR. λp : (T1 → T2 → R). p v1 v2
π1 ≜ ΛT1.ΛT2. λv : T1 × T2. v [T1] (λx : T1. λy : T2. x)
π2 ≜ ΛT1.ΛT2. λv : T1 × T2. v [T2] (λx : T1. λy : T2. y)

13

Example: Products

We can encode products in polymorphic λ-calculus without
adding any additional types!

The encodings are based on the (untyped) Church encodings:

τ1 × τ2 ≜ ∀R. (τ1 → τ2 → R) → R
(·, ·)≜ ΛT1.ΛT2. λv1 : T1 λv2 : T2.ΛR. λp : (T1 → T2 → R). p v1 v2

π1 ≜ ΛT1.ΛT2. λv : T1 × T2. v [T1] (λx : T1. λy : T2. x)
π2 ≜ ΛT1.ΛT2. λv : T1 × T2. v [T2] (λx : T1. λy : T2. y)

13

Example: Products

We can encode products in polymorphic λ-calculus without
adding any additional types!

The encodings are based on the (untyped) Church encodings:

τ1 × τ2 ≜ ∀R. (τ1 → τ2 → R) → R
(·, ·)≜ ΛT1.ΛT2. λv1 : T1 λv2 : T2.ΛR. λp : (T1 → T2 → R). p v1 v2
π1 ≜ ΛT1.ΛT2. λv : T1 × T2. v [T1] (λx : T1. λy : T2. x)

π2 ≜ ΛT1.ΛT2. λv : T1 × T2. v [T2] (λx : T1. λy : T2. y)

13

Example: Products

We can encode products in polymorphic λ-calculus without
adding any additional types!

The encodings are based on the (untyped) Church encodings:

τ1 × τ2 ≜ ∀R. (τ1 → τ2 → R) → R
(·, ·)≜ ΛT1.ΛT2. λv1 : T1 λv2 : T2.ΛR. λp : (T1 → T2 → R). p v1 v2
π1 ≜ ΛT1.ΛT2. λv : T1 × T2. v [T1] (λx : T1. λy : T2. x)
π2 ≜ ΛT1.ΛT2. λv : T1 × T2. v [T2] (λx : T1. λy : T2. y)

13

Example: Sums

Similarly, we can encode sums in polymorphic λ-calculus
without adding any additional types!

Again, the encodings are based on the (untyped) Church
encodings:

τ1 + τ2 ≜ ∀R.(τ1 → R) → (τ2 → R) → R

inl≜ ΛT1.ΛT2. λv1 : T1.ΛR. λb1 : T1 → R. λb2 : T2 → R. b1 v1
inr≜ ΛT1.ΛT2. λv2 : T2.ΛR. λb1 : T1 → R. λb2 : T2 → R. b2 v2

case≜ ΛT1.ΛT2.ΛR. λv :T1 + T2. λb1 :T1 → R. λb2 :T2 → R.
v [R] b1 b2

14

Example: Sums

Similarly, we can encode sums in polymorphic λ-calculus
without adding any additional types!

Again, the encodings are based on the (untyped) Church
encodings:

τ1 + τ2 ≜ ∀R.(τ1 → R) → (τ2 → R) → R
inl≜ ΛT1.ΛT2. λv1 : T1.ΛR. λb1 : T1 → R. λb2 : T2 → R. b1 v1

inr≜ ΛT1.ΛT2. λv2 : T2.ΛR. λb1 : T1 → R. λb2 : T2 → R. b2 v2
case≜ ΛT1.ΛT2.ΛR. λv :T1 + T2. λb1 :T1 → R. λb2 :T2 → R.

v [R] b1 b2

14

Example: Sums

Similarly, we can encode sums in polymorphic λ-calculus
without adding any additional types!

Again, the encodings are based on the (untyped) Church
encodings:

τ1 + τ2 ≜ ∀R.(τ1 → R) → (τ2 → R) → R
inl≜ ΛT1.ΛT2. λv1 : T1.ΛR. λb1 : T1 → R. λb2 : T2 → R. b1 v1
inr≜ ΛT1.ΛT2. λv2 : T2.ΛR. λb1 : T1 → R. λb2 : T2 → R. b2 v2

case≜ ΛT1.ΛT2.ΛR. λv :T1 + T2. λb1 :T1 → R. λb2 :T2 → R.
v [R] b1 b2

14

Example: Sums

Similarly, we can encode sums in polymorphic λ-calculus
without adding any additional types!

Again, the encodings are based on the (untyped) Church
encodings:

τ1 + τ2 ≜ ∀R.(τ1 → R) → (τ2 → R) → R
inl≜ ΛT1.ΛT2. λv1 : T1.ΛR. λb1 : T1 → R. λb2 : T2 → R. b1 v1
inr≜ ΛT1.ΛT2. λv2 : T2.ΛR. λb1 : T1 → R. λb2 : T2 → R. b2 v2

case≜ ΛT1.ΛT2.ΛR. λv :T1 + T2. λb1 :T1 → R. λb2 :T2 → R.
v [R] b1 b2

14

Type Erasure

The semantics presented above explicitly passes type but in an
implementation, one often wants to eliminate types for
efficiency.

The following translation “erases” the types from a polymorphic
λ-calculus expression.

erase(x) = x
erase(λx :τ. e) = λx. erase(e)

erase(e1 e2) = erase(e1) erase(e2)
erase(ΛX. e) = λz. erase(e) where z is fresh for e
erase(e [τ]) = erase(e) (λx. x)

15

Type Erasure

The semantics presented above explicitly passes type but in an
implementation, one often wants to eliminate types for
efficiency.

The following translation “erases” the types from a polymorphic
λ-calculus expression.

erase(x) = x
erase(λx :τ. e) = λx. erase(e)

erase(e1 e2) = erase(e1) erase(e2)
erase(ΛX. e) = λz. erase(e) where z is fresh for e
erase(e [τ]) = erase(e) (λx. x)

15

Type Erasure

The semantics presented above explicitly passes type but in an
implementation, one often wants to eliminate types for
efficiency.

The following translation “erases” the types from a polymorphic
λ-calculus expression.

erase(x) = x

erase(λx :τ. e) = λx. erase(e)
erase(e1 e2) = erase(e1) erase(e2)
erase(ΛX. e) = λz. erase(e) where z is fresh for e
erase(e [τ]) = erase(e) (λx. x)

15

Type Erasure

The semantics presented above explicitly passes type but in an
implementation, one often wants to eliminate types for
efficiency.

The following translation “erases” the types from a polymorphic
λ-calculus expression.

erase(x) = x
erase(λx :τ. e) = λx. erase(e)

erase(e1 e2) = erase(e1) erase(e2)
erase(ΛX. e) = λz. erase(e) where z is fresh for e
erase(e [τ]) = erase(e) (λx. x)

15

Type Erasure

The semantics presented above explicitly passes type but in an
implementation, one often wants to eliminate types for
efficiency.

The following translation “erases” the types from a polymorphic
λ-calculus expression.

erase(x) = x
erase(λx :τ. e) = λx. erase(e)

erase(e1 e2) = erase(e1) erase(e2)

erase(ΛX. e) = λz. erase(e) where z is fresh for e
erase(e [τ]) = erase(e) (λx. x)

15

Type Erasure

The semantics presented above explicitly passes type but in an
implementation, one often wants to eliminate types for
efficiency.

The following translation “erases” the types from a polymorphic
λ-calculus expression.

erase(x) = x
erase(λx :τ. e) = λx. erase(e)

erase(e1 e2) = erase(e1) erase(e2)
erase(ΛX. e) = λz. erase(e) where z is fresh for e

erase(e [τ]) = erase(e) (λx. x)

15

Type Erasure

The semantics presented above explicitly passes type but in an
implementation, one often wants to eliminate types for
efficiency.

The following translation “erases” the types from a polymorphic
λ-calculus expression.

erase(x) = x
erase(λx :τ. e) = λx. erase(e)

erase(e1 e2) = erase(e1) erase(e2)
erase(ΛX. e) = λz. erase(e) where z is fresh for e
erase(e [τ]) = erase(e) (λx. x)

15

Type Erasure

The following theorem states this translation is adequate:

Theorem (Erasure Adequacy)
For all expressions e and e′, we have e → e′ iff
erase(e) → erase(e′).

16

Type Inference

The type inference (or “type reconstruction”) problem asks
whether, for a given untyped λ-calculus expression e′ there
exists a well-typed System F expression e such that erase(e) = e′

It was shown to be undecidable by Wells in 1994.

See Chapter 23 of Pierce for further discussion, as well as
restrictions for which type reconstruction is decidable.

17

Type Inference

The type inference (or “type reconstruction”) problem asks
whether, for a given untyped λ-calculus expression e′ there
exists a well-typed System F expression e such that erase(e) = e′

It was shown to be undecidable by Wells in 1994.

See Chapter 23 of Pierce for further discussion, as well as
restrictions for which type reconstruction is decidable.

17

Type Inference

The type inference (or “type reconstruction”) problem asks
whether, for a given untyped λ-calculus expression e′ there
exists a well-typed System F expression e such that erase(e) = e′

It was shown to be undecidable by Wells in 1994.

See Chapter 23 of Pierce for further discussion, as well as
restrictions for which type reconstruction is decidable.

17

