Lecture 21
Advanced Types
We’ve developed a type system for the λ-calculus and mathematical tools for proving its type soundness.

We also know how to extend the λ-calculus with new language features.

Today, we’ll extend our type system with features commonly found in real-world languages: products, sums, references, and exceptions.
Products (Pairs)

Syntax

e ::= \cdots \mid (e_1, e_2) \mid \#1 e \mid \#2 e

v ::= \cdots \mid (v_1, v_2)
Products (Pairs)

Syntax

\[e ::= \cdots | (e_1, e_2) | \#_1 e | \#_2 e \]
\[v ::= \cdots | (v_1, v_2) \]

Semantics

\[E ::= \cdots | (E, e) | (v, E) | \#_1 E | \#_2 E \]

\[\#_1 (v_1, v_2) \rightarrow v_1 \]
\[\#_2 (v_1, v_2) \rightarrow v_2 \]
Product Types

\[\tau_1 \times \tau_2 \]
Product Types

$\tau_1 \times \tau_2$

$\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2$

$\Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2$
Product Types

\[\tau_1 \times \tau_2 \]

\[\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2 \]

\[\Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2 \]

\[\Gamma \vdash e : \tau_1 \times \tau_2 \]

\[\Gamma \vdash \#1 e : \tau_1 \]

\[\Gamma \vdash e : \tau_1 \times \tau_2 \]

\[\Gamma \vdash \#2 e : \tau_2 \]
Sums (Tagged Unions)

Syntax

\[
e ::= \cdots | \text{inl}_{\tau_1 + \tau_2} e | \text{inr}_{\tau_1 + \tau_2} e | (\text{case } e_1 \text{ of } e_2 | e_3) \\
v ::= \cdots | \text{inl}_{\tau_1 + \tau_2} v | \text{inr}_{\tau_1 + \tau_2} v
\]
Sums (Tagged Unions)

Syntax

\[e ::= \cdots | \text{inl}_{\tau_1 + \tau_2} e | \text{inr}_{\tau_1 + \tau_2} e | (\text{case } e_1 \text{ of } e_2 | e_3) \]

\[v ::= \cdots | \text{inl}_{\tau_1 + \tau_2} v | \text{inr}_{\tau_1 + \tau_2} v \]

Semantics

\[E ::= \cdots | \text{inl}_{\tau_1 + \tau_2} E | \text{inr}_{\tau_1 + \tau_2} E | (\text{case } E \text{ of } e_2 | e_3) \]

\[\text{case } \text{inl}_{\tau_1 + \tau_2} v \text{ of } e_2 | e_3 \rightarrow e_2 v \]

\[\text{case } \text{inr}_{\tau_1 + \tau_2} v \text{ of } e_2 | e_3 \rightarrow e_3 v \]
Sum Types

\[\tau ::= \cdots | \tau_1 + \tau_2 \]
Sum Types

\[
\tau ::= \cdots \mid \tau_1 + \tau_2
\]

\[
\Gamma \vdash e : \tau_1 \\
\hline
\Gamma \vdash \text{inl}_{\tau_1 + \tau_2} e : \tau_1 + \tau_2
\]

\[
\Gamma \vdash e : \tau_2 \\
\hline
\Gamma \vdash \text{inr}_{\tau_1 + \tau_2} e : \tau_1 + \tau_2
\]
Sum Types

\[\tau ::= \cdots | \tau_1 + \tau_2 \]

\[\Gamma \vdash e : \tau_1 \]

\[\Gamma \vdash \text{inl}_{\tau_1 + \tau_2} e : \tau_1 + \tau_2 \]

\[\Gamma \vdash e : \tau_2 \]

\[\Gamma \vdash \text{inr}_{\tau_1 + \tau_2} e : \tau_1 + \tau_2 \]

\[\Gamma \vdash e : \tau_1 + \tau_2 \quad \Gamma \vdash e_1 : \tau_1 \to \tau \quad \Gamma \vdash e_2 : \tau_2 \to \tau \]

\[\Gamma \vdash \text{case} \ e \ \text{of} \ e_1 : \tau_1 \ | \ e_2 : \tau \]
let $f = \lambda a : \textbf{int} + (\textbf{int} \rightarrow \textbf{int})$. case a of $(\lambda y. y + 1) \mid (\lambda g. g 35)$ in

let $h = \lambda x : \textbf{int}. x + 7$ in

$f \ (\text{inr}_{\textbf{int} + (\textbf{int} \rightarrow \textbf{int})} \ h)$
Syntax

\[e ::= \cdots | \text{ref } e | !e | e_1 := e_2 | \ell \]
\[v ::= \cdots | \ell \]
References

Syntax

\[e ::= \cdots \mid \text{ref } e \mid !e \mid e_1 := e_2 \mid \ell \]
\[v ::= \cdots \mid \ell \]

Semantics

\[E ::= \cdots \mid \text{ref } E \mid !E \mid E := e \mid v := E \]

\[
\begin{align*}
\ell \notin \text{dom}(\sigma) & \quad \frac{}{\langle \sigma, \text{ref } v \rangle \rightarrow \langle \sigma[\ell \mapsto v], \ell \rangle} \\
\sigma(\ell) = v & \quad \frac{\sigma(\ell) = v}{\langle \sigma, \ell \rangle \rightarrow \langle \sigma, v \rangle} \\
\frac{}{\langle \sigma, \ell := v \rangle \rightarrow \langle \sigma[\ell \mapsto v], v \rangle}
\end{align*}
\]
Reference Types

\[\tau ::= \cdots | \tau \text{ref} \]
Reference Types

\[\tau ::= \cdots \mid \tau \text{ref} \]

\[\Gamma \vdash e : \tau \]

\[\Gamma \vdash \text{ref } e : \tau \text{ ref} \]
Reference Types

\[\tau ::= \cdots \mid \tau \text{ref} \]

\[\Gamma \vdash e : \tau \]

\[\Gamma \vdash \text{ref } e : \tau \text{ref} \]

\[\Gamma \vdash e : \tau \text{ref} \]

\[\Gamma \vdash !e : \tau \]
Reference Types

\[
\tau ::= \cdots \mid \tau \text{ ref}
\]

\[
\frac{\Gamma \vdash e : \tau}{\Gamma \vdash \text{ref } e : \tau \text{ ref}}
\]

\[
\frac{\Gamma \vdash e : \tau \text{ ref}}{\Gamma \vdash !e : \tau}
\]

\[
\frac{\Gamma \vdash e_1 : \tau \text{ ref} \quad \Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1 := e_2 : \tau}
\]
Question

Is this type system sound?
Question

Is this type system sound?

Well... what is the type of a location ℓ?
Question

Is this type system sound?

Well... what is the type of a location ℓ? (Oops!)
Let Σ range over partial functions from locations to types.
Let Σ range over partial functions from locations to types.

\[
\Gamma, \Sigma \vdash e : \tau \\
\Gamma, \Sigma \vdash \text{ref } e : \tau \text{ ref}
\]
Store Typings

Let Σ range over partial functions from locations to types.

\[
\frac{\Gamma, \Sigma \vdash e : \tau}{\Gamma, \Sigma \vdash \text{ref } e : \tau \text{ ref}}
\]

\[
\frac{\Gamma, \Sigma \vdash e : \tau \text{ ref}}{\Gamma, \Sigma \vdash \text{!} e : \tau}
\]
Store Typings

Let Σ range over partial functions from locations to types.

\[
\begin{align*}
\Gamma, \Sigma \vdash e : \tau & \\
\hline
\Gamma, \Sigma \vdash \text{ref } e : \tau \text{ ref} & \\
\Gamma, \Sigma \vdash e : \tau \text{ ref} & \\
\hline
\Gamma, \Sigma \vdash !e : \tau & \\
\Gamma, \Sigma \vdash e_1 : \tau \text{ ref} & \Gamma, \Sigma \vdash e_2 : \tau \\
\hline
\Gamma, \Sigma \vdash e_1 := e_2 : \tau &
\end{align*}
\]
Let Σ range over partial functions from locations to types.

$$
\Gamma, \Sigma \vdash e : \tau \\
\Gamma, \Sigma \vdash \text{ref } e : \tau \text{ ref}
$$

$$
\Gamma, \Sigma \vdash e : \tau \text{ ref} \\
\Gamma, \Sigma \vdash !e : \tau
$$

$$
\Gamma, \Sigma \vdash e_1 : \tau \text{ ref} \quad \Gamma, \Sigma \vdash e_2 : \tau \\
\Gamma, \Sigma \vdash e_1 := e_2 : \tau
$$

$$
\Sigma(\ell) = \tau \\
\Gamma, \Sigma \vdash \ell : \tau \text{ ref}
$$
Reference Types Metatheory

Definition

Store σ is *well-typed* with respect to typing context Γ and store typing Σ, written $\Gamma, \Sigma \vdash \sigma$, if $\text{dom}(\sigma) = \text{dom}(\Sigma)$ and for all $\ell \in \text{dom}(\sigma)$ we have $\Gamma, \Sigma \vdash \sigma(\ell) : \Sigma(\ell)$.
Reference Types Metatheory

Definition

Store σ is *well-typed* with respect to typing context Γ and store typing Σ, written $\Gamma, \Sigma \triangleright \sigma$, if $\text{dom}(\sigma) = \text{dom}(\Sigma)$ and for all $\ell \in \text{dom}(\sigma)$ we have $\Gamma, \Sigma \triangleright \sigma(\ell) : \Sigma(\ell)$.

Theorem (Type soundness)

If $\cdot, \Sigma \triangleright e : \tau$ and $\cdot, \Sigma \triangleright \sigma$ and $\langle e, \sigma \rangle \rightarrow^* \langle e', \sigma' \rangle$ then either e' is a value, or there exists e'' and σ'' such that $\langle e', \sigma' \rangle \rightarrow \langle e'', \sigma'' \rangle$.
Reference Types Metatheory

Definition

Store σ is *well-typed* with respect to typing context Γ and store typing Σ, written $\Gamma, \Sigma \vdash \sigma$, if $\text{dom}(\sigma) = \text{dom}(\Sigma)$ and for all $\ell \in \text{dom}(\sigma)$ we have $\Gamma, \Sigma \vdash \sigma(\ell) : \Sigma(\ell)$.

Theorem (Type soundness)

If $\cdot, \Sigma \vdash e : \tau$ and $\cdot, \Sigma \vdash \sigma$ and $\langle e, \sigma \rangle \rightarrow^* \langle e', \sigma' \rangle$ then either e' is a value, or there exists e'' and σ'' such that $\langle e', \sigma' \rangle \rightarrow \langle e'', \sigma'' \rangle$.

Lemma (Preservation)

If $\Gamma, \Sigma \vdash e : \tau$ and $\Gamma, \Sigma \vdash \sigma$ and $\langle e, \sigma \rangle \rightarrow \langle e', \sigma' \rangle$ then there exists some $\Sigma' \supseteq \Sigma$ such that $\Gamma, \Sigma' \vdash e' : \tau$ and $\Gamma, \Sigma' \vdash \sigma'$.
Landin’s Knot

Using references, we (re)gain the ability define recursive functions!

\[
\text{let } r = \text{ref } \lambda x: \text{int}. \ 0 \ \text{in}
\]
Landin’s Knot

Using references, we (re)gain the ability define recursive functions!

```ocaml
let r = ref λx:int. 0 in
let f = (λx:int. if x = 0 then 1 else x × (!r) (x − 1)) in
```
Landin’s Knot

Using references, we (re)gain the ability define recursive functions!

```ocaml
let r = ref \( \lambda x : \texttt{int}. \ 0 \) in
let f = (\( \lambda x : \texttt{int}. \ \text{if} \ x = 0 \ \text{then} \ 1 \ \text{else} \ x \times (r' \ (x - 1)) \) \) in
let a = (r := f) in
```
Landin’s Knot

Using references, we (re)gain the ability define recursive functions!

```
let r = ref λx: int. 0 in
let f = (λx: int. if x = 0 then 1 else x × (!r) (x - 1)) in
let a = (r := f) in
f 5
```
Fixed Points

Syntax

\[e ::= \cdots | \text{fix} \ e \]
Fixed Points

Syntax

\[e ::= \cdots \mid \text{fix } e \]

Semantics

\[E ::= \cdots \mid \text{fix } E \]

\[
\text{fix } \lambda x : \tau . e \rightarrow e\{(\text{fix } \lambda x : \tau . e)/x\}
\]
Fixed Points

Syntax

\[e ::= \cdots \mid \text{fix } e \]

Semantics

\[E ::= \cdots \mid \text{fix } E \]

\[\text{fix } \lambda x: \tau. e \rightarrow e\{(\text{fix } \lambda x: \tau. e)/x\} \]

The typing rule for fix is on the homework...