
CS 4110 – Programming Languages and Logics
Lecture #30: Dependent Types

One way of thinking about System F is that it allows terms to depend on types. It’s natural to
wonder whether we can also go in the other direction and have types that depend on terms. We’ll
explore this idea in this lecture by developing a simple language of dependent types.

Intuitively, the resulting language can be thought of as having “compile-time” types that
depend on “run-time” values. While this arrangement might seem paradoxical, it is a very
powerful way to express the correctness of programs; and via the propositions-as-types principle,
it also serves as the foundation for interactive theorem provers.

Prominent dependently-typed languages include Coq, Nuprl, Agda, Lean, F*, and Idris. Some
of these languages, like Coq and Nuprl, are more oriented toward proving things using propositions
as types, and others, like F* and Idris, are more oriented toward writing “normal programs” with
strong correctness guarantees.

1 Typing Lists with Lengths

Dependent types can help avoid out-of-bounds errors by encoding the lengths of arrays as part
of their type. Consider a plain recursive IList type that represents a list of any length. Using type
operators, we might use a general type List that can be instantiated as List int, so its kind would
be type ⇒ type. But let’s use a fixed element type for now. With dependent types, however, we
can make IList a type constructor that takes a natural number as an argument, so IList 𝑛 is a list of
length 𝑛. Th

Here are the non-dependent types of some values from a simple library for working with lists:

nil : IList
cons : int → IList → IList
hd : IList → int
tl : IList → IList
isnil : IList → bool

In the dependently typed version of this list library, we need to provide a length argument every-
where we use the IList constructor. For example, we’ll want to give nil a type that indicates that it’s
an empty list:

nil : IList 0

The functions cons, hd, and tl need to accept lists of any length as arguments. To make this work,
we’ll turn each type into a value-to-type function. Each type will take a natural number 𝑛 as an
argument and produce a type that uses 𝑛 somewhere in its definition.

These value-to-type functions will be written using a 𝜆-like variable binding syntax: a type
of the form Π𝑥 : 𝜏1. 𝜏2 takes a value 𝑥 of type 𝜏1 and produces the type 𝜏2, which may reference
𝑥. For example, Π𝑛 : nat. . . . is a dependent type abstraction that takes a natural number as an
argument, as all our list-function types will.
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Here is the dependent type for the cons function. It takes an integer and a list of length 𝑛 and
produces a list of length 𝑛 + 1:

cons : Π𝑛 : nat. int → (IList 𝑛) → (IList (succ 𝑛))
This type can be seen as asking the client to first provide a number 𝑛, and then it requires that they
pass in a value of type IList 𝑛. Finally, it uses the successor function on natural numbers, succ, to
produce the result type.

The hd and tl are a little different. In a non-dependently-typed version, they would break at
run time if we passed them the empty list, nil. Now, though, we want the type to ensure that they
can only take a list of length at least 1. To do this, we’ll again make the types functions of a natural
number argument—which may be any natural number, including 0. Then, we’ll require the input
list to have length succ 𝑛. The types are:

hd : Π𝑛 : nat. (IList (succ 𝑛)) → int
tl : Π𝑛 : nat. (IList (succ 𝑛)) → (IList 𝑛)

The last function in our library, isnil, is no longer necessary. We don’t need to check the length
of lists at run time—i.e., using a term-to-term function—because it’s always available in the list’s
type.

2 Using and Checking Dependent Types

Using this dependently-typed list library can feel restrictive because you need to annotate every list
with a static length, but it is also very powerful: the type of your program describes the “shape” of
its interactions with lists. For example, here’s how you would write a function that adds together
the first two elements in a list:

𝜆𝑛 : nat.𝜆𝑙 : IList (succ (succ 𝑛)).
(hd (succ 𝑛) 𝑙) +
(hd 𝑛 (tl (succ 𝑛) 𝑙))

This function first takes a natural number 𝑛, and then it takes a list of length 𝑛 + 2—i.e., it requires
that the list must be of length 2 or more. Then, the function uses 𝑛 in its calls to hd and tl as
“evidence” that the operations will succeed. The expression tl (succ 𝑛) 𝑙, according to the library
signature above, has the type IList (succ 𝑛), indicating that the resulting list still has at least one
element in it. The type of hd requires that the program provide 𝑛 again as an argument to get the
head of that list. There is no well-typed expression tl 𝑚1 (tl 𝑚2 (tl 𝑚3 𝑙)) with any three numbers
𝑚1...3 that can get the tail of the input list three times.

Our example function’s type indicates that it only works on lists of length 2 or more. The types
for more complicated functions can also say things about the kinds of lists they produce. For
example, we might concoct sorting or reversing functions on lists, which should return lists of the
same length as the input, so they should have this type:

Π𝑛 : nat. (IList 𝑛) → (IList 𝑛)
To check that the functions sort or reverse have this type, you have to prove that they don’t alter the
length of their input lists. In fact, you can even imagine using more complex types to require that
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sort produces a sorted list: i.e., that every list’s head is less than or equal to all of the elements in
its tail. This means that checking the types in a dependently typed language can require checking
arbitrary correctness theorems.

Imbuing the type system with the power of proofs is clearly a powerful tool for writing correct
programs, but it comes at the cost of verbosity. Programming in a dependently typed world
requires writing proofs (as programs) everywhere to satisfy the type system. Therefore, these
languages tend to have features for helping you define strategies—called tactics—for searching for
proof terms to satisfy a given type.

Recall that our little program above passed around a number 𝑛 as “evidence” that the operations
hd and tl were safe to perform. That number never actually affected the operation of hd and tl; it
just worked as a constraint on the program to prevent it from doing anything bad at run time. This
pattern, where functions take an extra parameter that has nothing to do do with run-time operation
but is required to prove the program correct, is essential in dependently typed programming. To
actually run these programs, you usually use a process called extraction to erase computationally
irrelevant terms and translate into a language without dependent types—often, OCaml.

3 Propositions as Dependent Types

Dependent types are particularly useful through the Curry–Howard lens, where terms are seen as
proofs of the theorems encoded by their types. For example, say you want to provide an indexing
function on lists, called get. It would be nice to ensure, as with hd and tl, that the function doesn’t
go out of bounds when accessing the list. So if get takes a list of type IList 𝑛 and an index 𝑚,
its type should somehow ensure that 𝑚 < 𝑛. There’s no obvious way to use succ to enforce this
requirement as we did in the types of hd and tl.

Instead, we want to require a proof that 𝑚 < 𝑛 as an argument to the get function. Then, the get
function can use this proof to construct other proofs in its body to ensure that its successive tl calls
are safe. The idea is to define a new type Less 𝑚 𝑛 that is inhabited if and only if 𝑚 < 𝑛. A term
of this type serves as a proof of the inequality. With this in hand, we can write the type of get:

get : Π𝑚 : nat.Π𝑛 : nat. (Less 𝑚 𝑛) → (IList 𝑛) → int

This function takes 𝑚 and 𝑛 as arguments as well as a proof that 𝑚 < 𝑛 before doing its work on a
list of length 𝑛.

But how do we define Less itself? The idea in dependently typed languages is to let you create
opaque values of the types you declare. This lets you “call into existence” the elementary building
blocks of proofs that you will use to build up larger theorems. For example, we might invent a
value called Adjacent that serves as a proof that any number 𝑚 is less than 𝑚 + 1:

Adjacent : Π𝑚 : nat. Less 𝑚 (succ 𝑚)
Adjacent has the kind nat ⇒ type. If you remember that types are propositions, then you can also
think of it as a function from numbers to proofs. The value Adjacent 4 serves as a proof that 4 < 5,
i.e., it has the type Less 4 5.

To finish off a working definition of Less, we’ll want an inductive case. Let’s call it Inductive,
uncreatively:

Inductive : Π𝑚 : nat.Π𝑛 : nat. (Less 𝑚 𝑛) → (Less 𝑚 (succ 𝑛))
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This signature says that, given 𝑚 and 𝑛 and a proof that 𝑚 < 𝑛, you can also construct a proof that
𝑚 < 𝑛 + 1.

Given these definitions, you can now write this term:

Inductive 5 7 (Inductive 5 6 (Adjacent 5))
which has the type Less 5 8. In other words, it is a proof that 5 < 8.

The dependently typed languages that focus on “real programming,” like Idris, use this terms-
as-proofs correspondence to guarantee that computational functions like get cannot go wrong.
Other languages, like Coq, Nuprl, and Lean, focus on proving theorems instead, and this capability
is their raison d’être. They offer special features to help you search for inhabitants of complicated
types—i.e., to search for proofs of theorems.
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