1 Large-step operational semantics

In the last lecture we defined a semantics for our language of arithmetic expressions using a small-step evaluation relation $\rightarrow \subseteq \text{Config} \times \text{Config}$ (and its reflexive and transitive closure \rightarrow^*). In this lecture we will explore an alternative approach—large-step operational semantics—which yields the final result of evaluating an expression directly.

Defining a large-step semantics boils down to specifying a relation \Downarrow that captures the evaluation of an expression. The \Downarrow relation has the following type:

$$\Downarrow \subseteq (\text{Store} \times \text{Exp}) \times (\text{Store} \times \text{Int}).$$

We write $\langle \sigma, e \rangle \Downarrow \langle \sigma', n \rangle$ to indicate that $((\sigma, e), (\sigma', n)) \in \Downarrow$. In other words, the expression e with store σ evaluates in one big step to the final store σ' and integer n.

We define the relation \Downarrow inductively, using inference rules:

\[
\begin{align*}
\frac{\langle \sigma, n \rangle \Downarrow \langle \sigma, n \rangle}{\text{Int}} \quad & \quad \frac{n = \sigma(x)}{\langle \sigma, x \rangle \Downarrow \langle \sigma, n \rangle} & \text{Var} \\
\frac{\langle \sigma, e_1 \rangle \Downarrow \langle \sigma', n_1 \rangle \quad \langle \sigma', e_2 \rangle \Downarrow \langle \sigma'', n_2 \rangle}{\langle \sigma, e_1 + e_2 \rangle \Downarrow \langle \sigma'', n \rangle} & \text{Add} \quad n = n_1 + n_2 \\
\frac{\langle \sigma, e_1 \rangle \Downarrow \langle \sigma', n_1 \rangle \quad \langle \sigma', e_2 \rangle \Downarrow \langle \sigma'', n_2 \rangle}{\langle \sigma, e_1 \times e_2 \rangle \Downarrow \langle \sigma'', n \rangle} & \text{Mul} \quad n = n_1 \times n_2 \\
\frac{\langle \sigma, e_1 \rangle \Downarrow \langle \sigma', n_1 \rangle \quad \langle \sigma', x \mapsto n_1 \rangle, e_2 \rangle \Downarrow \langle \sigma'', n_2 \rangle}{\langle \sigma, x := e_1 ; e_2 \rangle \Downarrow \langle \sigma'', n_2 \rangle} & \text{Assgn}
\end{align*}
\]

To illustrate the use of these rules, consider the following proof tree, which shows that evaluating $\langle \sigma, foo := 3 ; foo \times bar \rangle$ using a store σ such that $\sigma(bar) = 7$ yields $\sigma' = \sigma[foo \mapsto 3]$ and 21 as a result:

\[
\begin{align*}
\frac{\langle \sigma, 3 \rangle \Downarrow \langle \sigma, 3 \rangle}{\text{Int}} \quad & \quad \frac{\langle \sigma', foo \rangle \Downarrow \langle \sigma', 3 \rangle}{\text{Var}} \quad \frac{\langle \sigma', bar \rangle \Downarrow \langle \sigma', 7 \rangle}{\text{Var}} \quad \frac{\langle \sigma', foo \times bar \rangle \Downarrow \langle \sigma', 21 \rangle}{\text{Mul}} \\
\frac{\langle \sigma, foo := 3 ; foo \times bar \rangle \Downarrow \langle \sigma', 21 \rangle}{\text{Assgn}}
\end{align*}
\]

A closer look to this structure reveals the relation between small step and large-step evaluation: a depth-first traversal of the large-step proof tree yields the sequence of one-step transitions in small-step evaluation.
2 Equivalence of semantics

A natural question to ask is whether the small-step and large-step semantics are equivalent. The next theorem answers this question affirmatively.

Theorem (Equivalence of semantics). For all expressions \(e \), stores \(\sigma \) and \(\sigma' \), and integers \(n \) we have:

\[
\langle \sigma, e \rangle \Downarrow \langle \sigma', n \rangle \text{ if and only if } \langle \sigma, e \rangle \rightarrow^* \langle \sigma', n \rangle
\]

To streamline the proof, we will work with the following definition of the multi-step relation:

\[
\begin{align*}
\frac{\langle \sigma, e \rangle \rightarrow^* \langle \sigma, e \rangle}{\text{Refl}} \\
\frac{\langle \sigma, e \rangle \rightarrow \langle \sigma', e' \rangle \quad \langle \sigma', e' \rangle \rightarrow^* \langle \sigma'', e'' \rangle}{\langle \sigma, e \rangle \rightarrow^* \langle \sigma'', e'' \rangle} & \quad \text{ Trans}
\end{align*}
\]

Proof sketch. We show each direction separately.

\(\Rightarrow \): We want to prove that the following property \(P \) holds for all expressions \(e \in \text{Exp} \):

\[
P(e) \triangleq \forall \sigma, \sigma' \in \text{Store}. \forall n \in \text{Int}. \langle \sigma, e \rangle \Downarrow \langle \sigma', n \rangle \implies \langle \sigma, e \rangle \rightarrow^* \langle \sigma', n \rangle
\]

We proceed by structural induction on \(e \). We have to consider each of the possible axioms and inference rules for constructing an expression.

Case \(e = x \): Assume that \(\langle \sigma, x \rangle \Downarrow \langle \sigma', n \rangle \). That is, there is some derivation in the large-step operational semantics whose conclusion is \(\langle \sigma, x \rangle \Downarrow \langle \sigma, n \rangle \). There is only one rule whose conclusion matches the configuration \(\langle \sigma, x \rangle \): the large-step rule \(\text{Var} \). Thus, we have \(n = \sigma(x) \) and \(\sigma' = \sigma \). By the small-step rule \(\text{Var} \), we also have \(\langle \sigma, x \rangle \rightarrow \langle \sigma, n \rangle \). By the Refl and Trans rules, we conclude that \(\langle \sigma, x \rangle \rightarrow^* \langle \sigma, n \rangle \), which finishes the case.

Case \(e = n \): Assume that \(\langle \sigma, n \rangle \Downarrow \langle \sigma', n' \rangle \). There is only one rule whose conclusion matches \(\langle \sigma, n \rangle \): the large-step rule \(\text{Int} \). Thus, we have \(n' = n \) and \(\sigma' = \sigma \) and so \(\langle \sigma, n \rangle \rightarrow^* \langle \sigma, n \rangle \) by the Refl rule.

Case \(e = e_1 + e_2 \): This is an inductive case. We want to prove that if \(P(e_1) \) and \(P(e_2) \) hold, then \(P(e) \) also holds. Let’s write out \(P(e_1) \), \(P(e_2) \), and \(P(e) \) explicitly.

\[
P(e_1) = \forall n, \sigma, \sigma'. \langle \sigma, e_1 \rangle \Downarrow \langle \sigma', n \rangle \implies \langle \sigma, e_1 \rangle \rightarrow^* \langle \sigma', n \rangle
\]

\[
P(e_2) = \forall n, \sigma, \sigma'. \langle \sigma, e_2 \rangle \Downarrow \langle \sigma', n \rangle \implies \langle \sigma, e_2 \rangle \rightarrow^* \langle \sigma', n \rangle
\]

\[
P(e) = \forall n, \sigma, \sigma'. \langle \sigma, e_1 + e_2 \rangle \Downarrow \langle \sigma', n \rangle \implies \langle \sigma, e_1 + e_2 \rangle \rightarrow^* \langle \sigma', n \rangle
\]

Assume that \(P(e_1) \) and \(P(e_2) \) hold. Also assume that there exist \(\sigma, \sigma' \) and \(n \) such that \(\langle \sigma, e_1 \rangle \Downarrow \langle \sigma', n \rangle \). We need to show that \(\langle \sigma, e_1 + e_2 \rangle \rightarrow^* \langle \sigma', n \rangle \).

We assumed that \(\langle \sigma, e_1 + e_2 \rangle \Downarrow \langle \sigma', n \rangle \). This means that there is some derivation whose conclusion is \(\langle \sigma, e_1 + e_2 \rangle \Downarrow \langle \sigma', n \rangle \). By inspection, we see that only one rule has a conclusion of this form: the Add rule. Thus, the last rule used in the derivation was Add and it must be the case that \(\langle \sigma, e_1 \rangle \Downarrow \langle \sigma'', n_1 \rangle \) and \(\langle \sigma'', e_2 \rangle \Downarrow \langle \sigma', n_2 \rangle \) hold for some \(n_1 \) and \(n_2 \) with \(n = n_1 + n_2 \).
By the induction hypothesis \(P(e_1) \), as \(\langle \sigma, e_1 \rangle \downarrow \langle \sigma'', n_1 \rangle \), we must have \(\langle \sigma, e_1 \rangle \rightarrow^* \langle \sigma'', n_1 \rangle \). Likewise, by induction hypothesis \(P(e_2) \), we have \(\langle \sigma'', e_2 \rangle \rightarrow^* \langle \sigma', n_2 \rangle \). By Lemma 1 below, we have,
\[
\langle \sigma, e_1 + e_2 \rangle \rightarrow^* \langle \sigma'', n_1 + e_2 \rangle,
\]
and by another application of Lemma 1 we have:
\[
\langle \sigma'', n_1 + e_2 \rangle \rightarrow^* \langle \sigma', n_1 + n_2 \rangle
\]
Then, using the small-step Add rule and the multi-step Trans rule, we have:
\[
\frac{n = n_1 + n_2}{\langle \sigma', n_1 + n_2 \rangle \rightarrow \langle \sigma', n \rangle} \quad \frac{\langle \sigma', n \rangle \rightarrow^* \langle \sigma', n \rangle}{\langle \sigma', n_1 + n_2 \rangle \rightarrow^* \langle \sigma', n \rangle}
\]
Finally, by two applications of Lemma 2, we obtain \(\langle \sigma, e_1 + e_2 \rangle \rightarrow^* \langle \sigma', n \rangle \), which finishes the case.

Case \(e = e_1 \ast e_2 \). Similar to case for \(e_1 + e_2 \) above.

Case \(e = x := e_1; e_2 \). Omitted. Try it as an exercise.

\(
\begin{equation}
\begin{array}{c}
\text{Case } \text{Refl: } \text{Then } e = n \text{ and } \sigma' = \sigma. \text{ We immediately have } \langle \sigma, n \rangle \downarrow \langle \sigma, n \rangle \text{ by the large-step rule } \text{Int.}
\\
\text{Case } \text{Trans: } \text{Then } \langle \sigma, e \rangle \rightarrow \langle \sigma'', e'' \rangle \text{ and } \langle \sigma'', e'' \rangle \rightarrow^* \langle \sigma', n \rangle. \text{ In this case, the induction hypothesis gives } \langle \sigma'', e'' \rangle \downarrow \langle \sigma', n \rangle. \text{ The result follows from Lemma 3 below.}
\end{array}
\end{equation}
\)

Lemma 1. If \(\langle \sigma, e \rangle \rightarrow^* \langle \sigma', n \rangle \), then the following hold:

- \(\langle \sigma, e + e_2 \rangle \rightarrow^* \langle \sigma', n + e_2 \rangle \)
- \(\langle \sigma, e \ast e_2 \rangle \rightarrow^* \langle \sigma', n \ast e_2 \rangle \)
- \(\langle \sigma, n_1 + e \rangle \rightarrow^* \langle \sigma', n_1 + n \rangle \)
- \(\langle \sigma, n_1 \ast e \rangle \rightarrow^* \langle \sigma', n_1 \ast n \rangle \)
- \(\langle \sigma, x := e ; e_2 \rangle \rightarrow^* \langle \sigma', x := n ; e_2 \rangle \)

Proof. Omitted; try it as an exercise.

Lemma 2. If \(\langle \sigma, e \rangle \rightarrow^* \langle \sigma', e' \rangle \) and \(\langle \sigma', e' \rangle \rightarrow^* \langle \sigma'', e'' \rangle \), then \(\langle \sigma, e \rangle \rightarrow^* \langle \sigma'', e'' \rangle \).

Proof. Omitted; try it as an exercise.

Lemma 3. If \(\langle \sigma, e \rangle \rightarrow \langle \sigma'', e'' \rangle \) and \(\langle \sigma'', e'' \rangle \downarrow \langle \sigma', n \rangle \), then \(\langle \sigma, e \rangle \downarrow \langle \sigma', n \rangle \).

Proof. Omitted; try it as an exercise.